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Abstract 
The establishment and maintenance of a pregnancy that goes to term is sine qua non for the long-term 
sustainability of dairy and beef cattle operations. The oocyte plays a critical role in providing the factors 
necessary for preimplantation embryonic development. Furthermore, the female, or maternal, environment 
where oocytes and embryos develop is crucial for the establishment and maintenance of a pregnancy to 
term. During folliculogenesis, the oocyte must sequentially acquire meiotic and developmental competence, 
which are the results of a series of molecular events preparing the highly specialized gamete to return to 
totipotency after fertilization. Given that folliculogenesis is a lengthy process in the cow, the occurrence of 
disease, metabolic imbalances, heat stress, or other adverse events can make it challenging to maintain 
oocyte quality. Following fertilization, the newly formed embryo must execute a tightly planned program that 
includes global DNA remodeling, activation of the embryonic genome, and cell fate decisions to form a 
blastocyst within a few days and cell divisions. The increasing use of assisted reproductive technologies 
creates an additional layer of complexity to ensure the highest oocyte and embryo quality given that in vitro 
systems do not faithfully recreate the physiological maternal environment. In this review, we discuss cellular 
and molecular factors and events known to be crucial for proper oocyte development and maturation, as 
well as adverse events that may negatively affect the oocyte; and the importance of the uterine environment, 
including signaling proteins in the maternal-embryonic interactions that ensure proper embryo 
development. We also discuss the impact of assisted reproductive technologies in oocyte and embryo quality 
and developmental potential, and considerations when looking into the prospects for developing systems 
that allow for in vitro gametogenesis as a tool for assisted reproduction in cattle. 
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Introduction 

The ability to successfully establish a pregnancy that goes to term and results in healthy 
offspring is perhaps the most important aspect of livestock production. Both dairy and beef 
operations rely upon cows calving at regular intervals to achieve economic and environmental 
sustainability. Research efforts in the field of reproductive biology have been directed to 
determine morphological, cellular, and molecular features involved in successful development 
of a pregnancy, and these efforts have greatly advanced our understanding about the 
mechanisms underlying oocyte quality and developmental competence, oviduct and uterine 
environment, and maternal recognition of pregnancy [for excellent reviews on these topics the 
reader is directed to Hansen and Tribulo (2019); Mathew et al. (2022); Moorey et al. (2022)]. 
Nevertheless, a considerable proportion (40 to 60%) of pregnancies are still lost in the first few 
weeks after ovulation (Wiltbank et al., 2016) and the widespread use of Assisted Reproductive 
Technologies (ART) has brought more attention to these losses. 
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Gametes and embryos respond to environmental cues and, thus, events occurring before 
and after ovulation can affect the developmental potential of the oocyte, zygote, and early 
embryo. Oocyte competence to undergo nuclear and cytoplasmic maturation, be fertilized and 
become a zygote begins prior to ovulation, when the preovulatory follicle and the oocyte itself 
must complete a series of cellular events (Blondin et al., 2002). Several processes are required 
by the oocyte to support early embryonic development: cytoplasmic accumulation of maternal 
mRNA (Krisher, 2004), modification of organelles (Krisher and Bavister, 1998), and meiotic 
resumption (Sirard, 2001). The oocyte plays an essential role in supplying the early embryo 
with mRNAs and organelles through the maternal-to-zygotic transition and beyond; therefore, 
any alterations in the oocyte cytoplasm during oogenesis and/or maturation may negatively 
impact the embryo derived from that oocyte. For instance, previous studies have indicated that 
oocytes matured in vivo are more competent to support embryo development compared with 
their in vitro-matured counterparts (Rizos et al., 2002; Krisher, 2004). These differences may be 
due to gene expression, transcript and protein abundance in the early embryo derived from 
those oocytes (Vigneault et al., 2004; Banliat et al., 2022). 

Similarly, preimplantation embryos are sensitive to the environment and their development 
may be affected by signaling molecules, either present within the maternal reproductive tract 
or during in vitro artificial culture conditions (Hansen and Tribulo, 2019; Ealy et al., 2021; 
Wooldridge et al., 2022). It is not surprising that conditions during the preimplantation period 
may exert short-, mid-, and long-term effects upon the embryo because this relatively short 
window of development involves a multitude of events to set the stage for future progression 
of pregnancy. For instance, epigenetic marks such as DNA methylation are lost (global 
demethylation) and re-inserted (de novo methylation) during reprogramming (Santos and 
Dean, 2004; Burdge and Lillycrop, 2010) under the influence of the preimplantation 
environment. Pronuclei syngamy, the first cleavage divisions, degradation of maternal mRNA, 
minor and major embryonic genomic activation (Hamatani et al., 2004), differentiation of the 
inner cell mass (ICM) that will eventually result in embryonic organogenesis (Ralston and 
Rossant, 2005; Kojima et al., 2014) and differentiation of extraembryonic tissues (placentation) 
(Wang and Dey, 2006; Grazul-Bilska et al., 2010), are amongst the distinct events occurring 
during preimplantation that may be affected by environmental signals. 

Finally, it is well documented that alterations in the peri-ovulatory microenvironment and 
later on during preimplantation embryonic development can have long-term effects on the fetus 
during pregnancy and, ultimately, offspring function and health after birth (Rivera, 2019; 
Siqueira et al., 2019). Less understood is the impact of events occurring earlier in folliculogenesis, 
i.e., during the preantral and early antral stages, and to what extent these events might influence 
oocyte quality and developmental competence. This review article explores different aspects of 
follicle growth, oocyte quality, and maternal environment for early embryo development that 
could impact the likelihood of successful pregnancy establishment in cattle. Recent advances in 
the understanding of the putative mechanisms involved in developmental alterations, as well as 
the prospect of in vitro gametogenesis, will also be discussed. 

Oocyte quality 

Oocyte quality is intrinsically related to follicle development (Eppig et al., 2002), and 
therefore maintaining oocyte viability throughout the long process of folliculogenesis is critical 
to ensure proper embryo development and ultimately pregnancy success. During the growth 
phase, the oocyte must sequentially acquire meiotic competence (i.e., the ability to leave the 
prophase I arrest and proceed to metaphase II in response to the LH surge – meiotic 
competence is acquired during the preantral to early antral transition) and developmental 
competence, or the ability to support embryo development after fertilization (acquired during 
antral follicle development) [reviewed by Schultz et al. (2018)]. At approximately 65-70% of 
their final volume, oocytes have accumulated about 95% of total and poly-A RNA that will be 
present in the fully-grown oocyte (Sternlicht and Schultz, 1981). Transcriptomic analysis of 
mouse oocytes isolated from primordial, primary, secondary, small antral and large antral 
follicles revealed a complex and highly regulated sequence of events, including upregulation 
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of genes and networks involved in cell cycle regulation, protein synthesis, DNA replication, and 
others (Pan et al., 2005). Interestingly, the group with most differential pattern of gene 
expression was the one of oocytes from primordial follicles, demonstrating that 1) these 
oocytes are transcriptionally active; and 2) the primordial to primary transition is a critical step 
for successful oogenesis and folliculogenesis (Pan et al., 2005). 

A detailed understanding of the requirements and determinants of oocyte quality during 
preantral folliculogenesis (which spans the resting primordial follicle up to the late or multi-
layer secondary follicle, leading up to antrum formation) is still missing in large species such as 
cattle. However, studies examining the long-term effects of altered physiological states on 
oocyte quality and fertility demonstrate that the importance of a healthy environment for 
oocyte growth extends much beyond the antral follicle wave. It has been demonstrated in 
cattle that the occurrence of severe negative energy balance or disease (reproductive or 
otherwise) during the early postpartum period affects the quality of the ovulatory oocyte up to 
60 days later (Garverick et al., 2013; Ribeiro et al., 2016; Marei et al., 2022). Culture of murine 
preantral follicles at the early secondary stage (starting follicle diameter of 100-130 µm) in the 
presence of non-esterified fatty acids altered follicular development as evidenced by lower rate 
of antrum formation, changes in gene expression and steroidogenic profile. Although follicles 
and oocytes developed under these conditions, cleavage and development of the resulting 
embryos to the blastocyst stage was impaired (Valckx et al., 2014). 

Association studies in cattle confirm that severe negative energy balance during the 
transition period affects fertility; a recent study demonstrated several differences in the 
transcriptomic profile of pre-ovulatory follicle granulosa cells at eight weeks post-partum when 
they originated from cows with high or low concentration of non-esterified fatty acid in blood 
at two weeks post-partum (Marei et al., 2022). Although a reliable in vitro system that allows 
the growth of bovine preantral follicles to the pre-ovulatory stage and beyond is not yet 
available, short-term follicle or ovarian cortex culture have unraveled inflammatory processes, 
oxidative stress and apoptosis among the factors potentially involved in impairment of oocyte 
viability (Leroy et al., 2005; Marei et al., 2019; Pedroza et al., 2022). Similarly, in vitro culture of 
bovine ovarian cortex in the presence of lipopolysaccharides (LPS) increased the production of 
pro-inflammatory cytokines and induced markers of primordial follicle activation (Bromfield 
and Sheldon, 2013). 

The external environment can also have a long-term negative impact on oocyte quality. 
Perhaps the best example is that of heat stress and the dramatic detrimental effect it has on 
cattle fertility. The detrimental effects of heat stress are multifactorial; oocyte quality and 
hormonal production take weeks to months to return to physiologic levels after exposure to 
summer heat [reviewed by Roth (2015)], indicating that preantral follicles are being affected. 
The molecular reasons for this long-term impact in preantral follicles and oocytes have been 
investigated to some extent in vitro and include loss of follicle growth and viability, in addition 
to upregulation of transcripts related to apoptosis and stress response. However, results have 
been inconsistent and variable according to stage of preantral follicle examined, whether 
follicles were enclosed in the ovarian stroma or isolated before culture, and the regimen of 
heat stress applied (Paes et al., 2016; Aguiar et al., 2020). 

A recent study examined the transcriptomic profile of single bovine oocytes between 60 
and 120 µm in diameter and found that the oocyte undergoes significant changes in gene 
expression as it progresses through the growth phase (Latorraca et al., 2023). Although the 
follicle size was not specifically measured in that study, the initial oocyte diameter likely 
corresponds to a secondary stage preantral follicle or a follicle that is transitioning into the 
antral phase. This study indicates that the oocyte is transcriptionally active and undergoing 
significant changes as it develops, confirming the findings from murine oocytes. Although not 
yet published for bovine follicles, it has been demonstrated in the mouse that the oocyte 
undergoes extensive changes in DNA methylation during the growth phase [reviewed by 
Anckaert and Fair (2015)]. This agrees with the idea of the massive genome reorganization that 
the highly specialized oocyte must undergo in order to support embryo development. 

The influence of hormones on preantral follicle and oocyte development has been a topic of 
investigation for many years. The gonadotropin follicle stimulating hormone (FSH) has been 
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implicated in the regulation of preantral follicle growth, however in vitro results have been 
somewhat inconclusive. Although in vivo studies in large animals have been scarce, it has been 
demonstrated that hypophysectomized ewes had impaired preantral follicle development, with 
the population of primary follicles being the most affected. The FSH receptor is found in follicles 
starting at the primordial or primary stages of development of several mammalian species 
[reviewed by Morton et al. (2023 in press)] and bovine follicles at the primary stage of 
development respond to FSH by increasing the levels of cAMP (unpublished observations). 
Supplementation of culture medium with FSH accelerates bovine follicle development, although 
not dramatically (Candelaria et al., 2020). Accordingly, a recent study in mice demonstrated that 
successive ovarian stimulations for oocyte recovery resulted in accelerated depletion of the 
preantral follicle reserve (Wang et al., 2022). Although this has not yet been examined in cattle, 
this study is relevant given the still prevalent use of hormonal stimulation before oocyte 
collection for in vitro embryo production, particularly in Bos taurus breeds in North America, 
where the United States is one of the top producers of in vitro cattle embryos worldwide. 

In summary, folliculogenesis and oogenesis of cattle are lengthy processes that are subjected 
to the effects of the internal as well as the external environment. Due to the difficulty of studying 
preantral folliculogenesis and the absence of efficient culture systems, most of the knowledge 
available today comes from rodents, with cattle studies being more limited to association in vivo 
studies and short-term in vitro culture. The refinement of less invasive techniques to allow the 
retrieval of preantral follicles from the ovaries of living cows, associated with optimization of in 
vitro culture conditions, will help shed light into the mechanisms regulating oocyte development 
and the factors determining oocyte competence for pregnancy success. 

Maternal environment 

Epigenetics and signaling pathways 

Early embryo development involves a series of molecular events including the so-called 
epigenetic reprogramming (Niemann et al., 2010). This biological phenomenon begins at the 
zygote stage and is responsible for making embryonic cells totipotent due to global genome 
demethylation, with the exception of imprinted genes. Later, embryonic cells must undergo de 
novo methylation before differentiation of specific cell types. Reprogramming of epigenetic 
marks such as DNA and histone methylation is controlled by DNA methyltransferases, histone 
methyltransferases, and histone acetyltransferases or deacetylases (Inbar-Feigenberg et al., 
2013). The preimplantation period of development is also marked by the first cell-fate decision 
of the embryo, characterized by differentiation of polarized and depolarized blastomeres into 
ICM or trophectoderm (TE). In mice, first cell-fate decision is directed by expression of NANOG 
by the inner embryo cells (ICM) or CDX2 by the outer TE cells through the Hippo signaling 
pathway (Leung and Zernicka-Goetz, 2013). 

In the specific case of ART, particularly in vitro embryo production (IVP), it is noteworthy that 
all these events occur during in vitro culture. Considering the fact that artificial culture systems 
are very distinct from the natural maternal reproductive tract and the early embryo is sensitive 
to environmental cues, suboptimal conditions may and will affect further embryonic 
development and pregnancy success. The mechanisms are still not fully understood, but 
evidence support the idea that disruptions of epigenetic marks might be involved in the 
differences between in vivo and in vitro embryos (Hiendleder et al., 2006; Katari et al., 2009). In 
that regard, there is strong evidence that alterations in gene expression patterns resultant from 
changes to the epigenome are a major cause of abnormalities subsequent from a disturbed 
environment such as in vitro culture (Calle et al., 2012; Feuer et al., 2014), including imprinting 
disorders (Fernández-Gonzalez et al., 2004; Horsthemke and Ludwig, 2005; El Hajj and Haaf, 
2013; Urrego et al., 2014) and abnormal expression of non-imprinted genes (Katari et al., 2009). 
Epigenetic modifications have been observed following IVP in humans and cattle (Katari et al., 
2009; Chen et al., 2013) and are characterized by loss of methylation in imprinted genes in those 
species (Doherty et al., 2000; Market-Velker et al., 2010; Chen et al., 2015). 
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Previous studies have evaluated DNA methylation in bovine fetuses with a phenotype 
characterized by overgrowth, referred to as ‘large offspring syndrome’. Affected fetuses 
presented biallelic expression of several imprinted genes due to loss of methylation in one of the 
alleles in different fetal tissues (Chen et al., 2013). Loss of methylation has also been detected by 
RNAseq analysis of allele specific expression of imprinted genes (Chen et al., 2015). From a 
developmental perspective, in vitro embryo production systems disrupt distinct epigenetic 
features of the embryonic cells and may exert negative effects on further fetal development. 

Molecular oviductal and uterine features during preimplantation 

The oviductal and uterine environments are an intricate network of substances and 
signaling molecules that may act directly or indirectly on the embryo to affect embryonic 
development and subsequent pregnancy (Wolf et al., 2003; Halter et al., 2011; Lonergan and 
Forde, 2014). The distinct environments can program evolutionary adaptations required for 
species survival through advantageous adaptations to life after birth. Animal models have been 
used to demonstrate the effects of an altered maternal environment upon cellular and 
molecular characteristics of the embryo. In rats, a low-protein diet fed to pregnant dams 
induced changes in insulin, glucose and amino acids concentrations. Those alterations in 
maternal serum metabolites and uterine microenvironment led to alterations in embryonic cell 
numbers apparently as a result of compromised rate of cellular proliferation. Blastocysts had 
decreased numbers of TE and ICM cells compared with embryos collected from dams fed a 
normal diet (Kwong et al., 2000). Physiologically, the uterus is a nutrient-rich environment that 
is the sole source to support early preimplantation embryo development. The uterine 
metabolome during the first seven days of the estrous cycle has been characterized in the cow. 
Numerous putative unique metabolites (147) have been identified and included metabolites 
that have signaling capacities and the ability to affect embryo development. Moreover, the 
uterine metabolome changed over time, from ovulation until day 7 of the cycle, evidence of the 
dynamic nature of the maternal environment (Tribulo et al., 2019). 

In addition, assessment of gene expression patterns between ovulation and day 7 of the 
estrous cycle has also been used to identify potential molecules that could affect embryo 
development during the preimplantation period in the bovine uterus and oviduct (Tribulo et al., 
2018). A total of 93 target genes were studied and all were expressed in the reproductive tract; 
those included hormones, growth factors, chemokines, cytokines and signaling molecules. A 
time-dependent expression pattern was observed, with some genes regulated by estradiol 
during early phases of the cycle and other set of genes regulated by progesterone as the cycle 
progressed. These so-called ‘embryokines’ identified as maternally-derived signaling molecules 
with potential effects to regulate early embryo development and, therefore, a putative role to 
improve outcomes of in vitro embryo production if added to culture medium. 

Assisted reproductive technologies 

Advantages and limitations 

The benefits of ART in the field of animal breeding to promote rapid progress in genetic 
gain are well recognized in several domestic animals and considered very important, 
particularly for livestock production. The past years have witnessed a consistent increase in the 
use of ART to produce high-genetic merit animals, with a total reported number of ~1.9 million 
cattle embryos transferred globally in 2021 (Viana, 2022). The global number of in vivo derived 
(MOET) embryos has been superior than the number of IVP embryos since the beginning of 
embryo data collection by the International Embryo Technology Society (IETS) in the early 
1980´s; however, a shift in these numbers occurred in 2017 and the production and transfers 
of IVP embryos was greater than MOET embryos for the first time on record (Viana, 2018). This 
shift was not surprising because a trend of increasing numbers of IVP and a 
stagnated/decreasing numbers of MOET embryos has been observed for several years by the 
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IETS data retrieval committee. In livestock, particularly cattle, the use of ART has been 
continuously increasing, mostly to produce genetically superior animals. Of the 1.9 million 
embryos produced in 2021, approximately 80% were IVP (Viana, 2022). 

Among the main potential advantages of IVP over MOET that have made it such a popular 
technique are 1) the dramatic reduction in generation interval due to oocyte retrieval from pre-
pubertal females (not feasible with MOET), and 2) the acceleration in the spread of elite 
genetics since OPU can be performed more frequently than MOET and oocytes can be 
retrieved from donors up to the end of the first trimester of pregnancy, i.e., IVP is more suitable 
for large-scale embryo transfers programs due to its ‘economy of scale’ feature. When 
incorporated into the routine reproductive management in dairy farms, embryo technologies 
have also been successfully used to bypass low fertility during summer heat-stress in high 
producing lactating dairy cows, with an important advantage in terms of pregnancy rates 
compared with artificial insemination (Stewart et al., 2011; Vasconcelos et al., 2011; 
Baruselli et al., 2020). 

Despite the apparent success in the adoption and use of ART (embryo technologies) by dairy 
and beef operations, there is still some challenges and bottlenecks involved, particularly for 
IVP embryos. Evidence indicates that disruptions in biological process during oocyte in vitro 
maturation, fertilization, and embryo culture probably caused by the artificial environment can 
lead to abnormal development with potential lifetime impacts on the offspring (Fleming et al., 
2015; Siqueira et al., 2019). The quality of immature cumulus-oocyte complexes aspirated by 
ovum pick-up (OPU) are also affected by disturbances in final follicular growth, because oocyte 
competence to support embryo development relies on accumulation of maternal transcripts 
in their cytoplasm. 

As a consequence of these artificial conditions during critical phases of oocyte/zygote/embryo 
development, blastocysts produced in vitro differ from their naturally derived (in vivo) 
counterparts both in morphology and molecularly (Rinaudo and Schultz, 2004). Conversion of 
cleaved zygotes into blastocysts is fairly low (Thompson, 1997; Lazzari et al., 2002; 
Lonergan et al., 2006), gene expression (Enright et al., 2000; Giritharan et al., 2007; 
McHughes et al., 2009) and epigenetic marks (Fernández-Gonzalez et al., 2004; Urrego et al., 
2014) may be disrupted, and the actual blastocyst is exposed to metabolic stress by in vitro 
conditions (Gardner and Harvey, 2015). 

Practical consequences of the putative disturbances to developmental processes caused by 
an artificial environment have implications on the outcomes after the transfer of an IVP 
embryo. In cattle, the risk of a successful pregnancy is reduced if an IVP embryos is transferred 
into a recipient compared with in vivo-derived embryos (Hasler, 2000; Pontes et al., 2009; 
Siqueira et al., 2009; Ferraz et al., 2016). If pregnancy establishment occurs, early and late 
embryonic losses are more frequent in dams carrying an IVP embryo/fetus (Pohler et al., 2016) 
and the chance of abortions is increased (Farin and Farin, 1995; Wang et al., 2004). Fetal 
morphology and development can be affected (Bertolini et al., 2002) and changes in placenta 
molecular features have also been observed for IVP-embryo pregnancies (Salilew-
Wondim et al., 2013). 

There is substantial evidence that characteristics of offspring from IVP at birth can be 
different compared with their naturally-conceived counterparts in cattle, sheep, mice and 
humans (Farin and Farin, 1995; Young et al., 1998; Sinclair et al., 1999; Blondin et al., 2000; 
Bertolini et al., 2002; Farin et al., 2006; Bloise et al., 2014; Feuer et al., 2014; Lafontaine et al., 
2023). Particularly in ruminants, the most common aberrant phenotype in newborns derived 
by IVP is fetal overgrowth, an abnormal condition frequently referred to as “large offspring 
syndrome” (Behboodi et al., 1995; Young et al., 1998; Farin et al., 2010). The bovine large 
offspring syndrome is characterized not only by elevated birth weight, which is possibly the 
least important problem associated with IVP. There is also increased incidence of abortions, 
congenital malformations and aberrant perinatal abnormalities (Holm and Callesen, 1998; van 
Wagtendonk-de Leeuw et al., 1998). The severity of the symptoms, however, may vary from 
case to case (Farin et al., 2006). Interestingly, adult cattle can also be affected. Cardiomegaly at 
13 months of age observed in calves that were heavier at birth (oversized) as a result of IVP 
(McEvoy et al., 1998). Performance of adult IVP-derived offspring might also be offset, if genetic 
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potential is considered. Results of recent retrospective studies have raised some important 
questions about lifetime productive and fertility performance in dairy cows (Siqueira et al., 
2017; Lafontaine et al., 2023). 

Signaling molecules to mimic maternal reproductive tract 

Optimization of in vitro procedures and culture systems may enhance blastocyst production 
and quality, ultimately leading to a greater success in pregnancy and birth of healthy offspring. 
Therefore, efforts have been made to mimic the natural maternal environment (oviductal and 
uterine) and the dynamics of changes in the content of these systems. Although much progress 
has been made, in vitro systems are still remarkably different from the maternal environment 
and the artificial media used for IVP are probably deficient in several regulatory molecules that 
play important roles in regulating development in vivo (Gardner and Harvey, 2015). For 
instance, surface tension, cell-to-cell interactions, stiffness, salts, sugars, ions, amino acids, 
miRNAs, signaling molecules, exosomes, and other components may be deficient or even 
absent in the culture system. 

Considering the major differences between in vivo and in vitro produced embryos, it is 
reasonable to hypothesize that the conditions in the oviduct and endometrium during early 
developmental stages enhance developmental competence of embryos. Therefore, attempts 
to replicate the maternal environment include the addition of growth factors and molecules 
naturally secreted by the female reproductive tract to media used for IVP (Paria and Dey, 1990; 
Kane et al., 1997). From the molecular perspective, it has been reported that addition of 
maternally-derived regulatory molecules to in vitro embryo culture medium can alter the DNA 
methylome in fetal tissue at the end of the third trimester of pregnancy (Li et al., 2020). 

In this context, several regulatory molecules have been added to culture systems to 
improve embryo development to the blastocyst stage. Previous studies have evaluated the 
effects of different growth factors such as IGF1 (Palma et al., 1997; Sirisathien and Brackett, 
2003; Block et al., 2007), EGF (Paria and Dey, 1990; Sirisathien et al., 2003; Arat et al., 2016), 
HGF, activin A, CTGF, TDGF1 (Kannampuzha-Francis et al., 2017), TGFA and TGFB (Paria and 
Dey, 1990), and FGF2 (Fields et al., 2011). A positive effect on embryonic development has been 
reported by the majority of these studies and currently many commercial IVP laboratories have 
incorporated growth factors in their media composition. Some factors and molecules secreted 
by the maternal oviduct and uterine environment, embryokines, can act directly upon the 
embryo and regulate its development (Hansen et al., 2014). The combination of growth factors 
and maternally-derived molecules also seems to benefit development and survival of IVP 
embryos, as demonstrated by the use of a proprietary, serum-free culture medium for bovine 
embryo production (Block et al., 2010). 

Pregnancy outcomes may also be improved after the transfer of embryos exposed to 
regulatory molecules during in vitro culture. For instance, treatment with the embryokine CSF2 
increased pregnancy rates of IVP embryos (Loureiro et al., 2009; Denicol et al., 2014). Similarly, 
IVP embryos treated with another embryokine (DDK1) were also more likely to establish a 
successful pregnancy compared with non-treated embryos (Denicol et al., 2014). Because 
determinants of pregnancy success are multifactorial, some studies have not observed 
benefits of treating embryos during culture or, in some cases, the embryo culture system and 
media composition affected pregnancy outcomes. For example, Amaral et al. (2022) observed 
a positive effect on development to the blastocyst stage in embryos exposed to serum or 
serum replacer during culture, but a lower pregnancy rate after the transfer of these embryos 
into recipients. Moreover, if CSF2 or DKK1 were added to culture medium, actions of theses 
embryokines were dependent on the presence of serum in the medium. Pregnancy rate was 
reduced for embryos cultured with no serum and exposed to CSF2 or DKK1, but these 
molecules did not affect pregnancy if serum was present. Finally, CSF2 actually abolish the 
negative effect of serum upon pregnancy rate after embryo transfer. 
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Potential novel markers of embryo competence 

Determining markers of embryo competence to establish a pregnancy has been the focus 
of much research as it has the potential to improve the efficiency of ART by enabling the early 
prediction of which embryos are more likely to survive to term. Recently, Rabaglino et al. (2023) 
combined the integration of transcriptomic datasets with the use of machine learning to 
predict embryo competence and survival. The authors reported a subset of eight genes, 
namely GSTO1, CHSY1, TPI1, YWHAG, CCNA2, LSM4, CDK7, and EIF4A3, which predicted with high 
accuracy the competence of embryos in different datasets, indicating that these genes might 
be important biomarkers of embryo competence. 

Reproduction in a dish 

Advances and bottlenecks related to in vitro gametogenesis 

The advances in in vitro gametogenesis that the field of reproductive biology has seen in the last 
decade have changed the reality an opened up the potential for dramatic changes in ART. With the 
field of stem cell biology expanding in agriculturally-relevant species, the development of technologies 
to enable in vitro gametogenesis could make it possible to move into in vitro breeding 
(Goszczynski et al., 2019), exponentially accelerating genetic gain and decreasing the generation 
interval. Although this has been proposed in cattle (Goszczynski et al., 2019), it could conceptually be 
applied to any agricultural species as long as there are pluripotent stem cells available. 

Although female in vitro gametogenesis has been demonstrated in mice for the first time in 2016 
(Hikabe et al., 2016), the efficiency of obtaining oocytes, embryos and offspring is still extremely 
low. This triggered a detailed evaluation of the molecular characteristics of the different cell types 
created using the system, with comparisons with cells at the same stage obtained in vivo 
(Aizawa et al., 2023 in press). It was found that not the differentiation of pluripotent stem cells into 
primordial germ cell-like cells, but the subsequent steps of oocyte and follicle development, 
seemed to be the most critically altered by the in vitro system. Most notably, the authors found that 
the in vitro-derived oocytes lacked markers of acquisition of developmental competence and 
displayed epigenetic alterations such as DNA methylation abnormalities. 

Clearly, there is still a lot to learn about the processes leading to the development of a 
competent oocyte; moreover, although they represent a groundbreaking advance in the ability 
to make oocytes in a dish, the existing protocols fail to faithfully recapitulate the highly 
complex, highly regulated process of oogenesis. 

Final remarks 

The natural microenvironment within the maternal reproductive tract has evolved in mammals to 
provide full support and program the development of early embryos and fetuses until pregnancy 
goes to term. Any perturbations to these well-balanced conditions have the potential to affect 
pregnancy success (establishment and completeness) and offspring health after birth (Figure 1). It is 
now well recognized that developmental programming starts as early as the initial stages of oocyte 
growth inside a given ovarian follicle, passing through the period of preimplantation embryonic 
development, and going up to postnatal life. Thus, the consequences of errors in programming can 
have lifetime effects upon the offspring. 

As the adoption of ART by livestock production systems, particularly IVP, has increased 
substantially in the past decades, the effects of an altered maternal environment (artificial or non-
physiological) have brought great attention to the concepts of programming, especially if one 
considers the one health concept applied to animal production systems. Different strategies have 
been developed to overcome the main limitations and bottlenecks of ART, including efforts to 
preserve/enhance oocyte quality, improvements in culture conditions by addition of maternal-borne 
factors and, lately, advanced in vitro culture systems with one potential future goal being in vitro 
breeding. These technological advances in assisted reproduction will undoubtedly contribute for 
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future livestock productivity and sustainability by accelerating genetic progress with the use of 
breeding techniques that better mimic the physiological environment and, thus, are more efficient. 

 
Figure 1. Follicular and embryonic events that are critical for a successful pregnancy. Oocytes are 
“stored” in the ovary enclosed in a layer of flat granulosa cells in the primordial follicles. Activation and 
growth of follicles through preantral stages takes several weeks to months, and during this time there is 
intense activity within the follicular unit with DNA replication, protein synthesis and transcriptional 
activity. Acquisition of meiotic competence by the oocyte occurs during the transition from late preantral 
to the early antral phase. Most of the transcripts that the oocyte will synthesize for later embryo use will 
be stored by the early to mid-antral stage. At this point the oocyte must also acquire developmental 
competence. Following fertilization of the mature oocyte by sperm, the embryo must now use the 
resources provided by the oocyte to ensure successful development to the blastocyst stage. Global 
epigenetic remodeling (with exception of imprinted genes) will be critical to reset the cellular program 
into a totipotent state. The embryonic genome activation (EGA) that occurs between the 4- and 16-cell 
stage is critical for the embryo to become transcriptionally autonomous and proceed to the first and 
second cell fate decisions at the blastocyst stage. There are many internal (e.g. metabolic state) and 
external (heat stress, in vitro culture) factors that can interfere with one or multiple events and disrupt 
oocyte and/or embryo development, resulting in failure to establish or maintain a pregnancy. 
Abbreviations: ICM: inner cell mass; TE: trophectoderm. 
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