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Abstract 
In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under 
different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-
throughput data and provides transcriptomes that can undergo additional computational analyses. This 
study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro 
from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation 
analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to 
in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield 
blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, 
±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. 
Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 
13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed 
genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were 
highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, 
ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, 
genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were 
identified. Gene co-expression network and module preservation analysis revealed strong preservation of 
functional modules related to exosome components, steroid metabolism, cell proliferation, and 
morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which 
may reflect differences in embryo development kinetics and the activation of cell signaling pathways 
between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for 
assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays. 

Keywords: blastocyst, buffalo, oocyte, RNA-seq, co-expression networks. 

Introduction 
In buffalo, the in vitro production protocols often yield low rates of nuclear maturation and 

poor morphological quality in oocytes and blastocysts compared to other livestock animals (Di 
Francesco et al., 2012; Gasparrini et al., 2014; Baruselli et al., 2020; Kumar et al., 2023). Buffalo 
oocytes and embryos exhibit unique cellular morphology, nuclear maturation (Santos et al., 
2002; Neglia et al., 2003; Marin et al., 2019a), and developmental kinetics (Neglia et al., 2003; 
Gasparrini et al., 2014) aspects. 
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Adapting the in vitro microenvironment in a specie specific manner is essential for 
improving In Vitro Embryo Production (IVEP) performance (Lonergan et al., 2006; Marin et al., 
2019b; Wang et al., 2023a). Investigating the molecular aspects of oocyte and embryo 
competence and understanding species-specific differences may help identify areas for 
protocol adaptation to enhance IVEP in a particular species. 

In this context, the molecular aspects of in vitro maturation and embryo development in 
buffalo were initially explored using microarray (Kandil et al., 2010; Kumar et al., 2012; 
Abdoon et al., 2014) and RNA sequencing (RNA-seq) approaches (Strazzullo et al., 2014; 
Sood et al., 2019; Capra et al., 2020; Capra et al., 2022; Goel et al., 2022). RNA-seq estimates 
gene expression by quantifying the number of reads derived from each gene (Mortazavi et al., 
2008) . This method has been used to study oocyte competence (Feuerstein et al., 2012; 
Bunel et al., 2015; Luo et al., 2016; Du et al., 2018; Wang et al., 2023b)  and embryo competence 
(Bauer et al., 2010; Redel et al., 2012; Cao et al., 2014; Kropp and Khatib, 2015a, 2015b; 
Milazzotto et al., 2016; Boroviak et al., 2018; Sood et al.; 2019; Li et al., 2020; Goel et al., 2022)  
across various species. Moreover, to investigate in vitro maturation (Reyes et al., 2015; 
Gilchrist et al., 2016; Angel-Velez et al., 2023)  and in vitro embryo development  in mammalian 
(Østrup et al., 2013; Xue et al., 2013; Graf et al., 2014; Jiang et al., 2015; Song et al., 2022; 
Rabaglino et al., 2023) . 

This study describes the transcriptomic profile of in vitro matured oocytes and in vitro 
produced blastocysts of buffaloes through RNA-seq, gene co-expression networks, and 
module preservation analysis allowing for a comprehensive comparison with the bovine 
transcriptomes. 

Methods 

Ethics Committee and In Vitro Embryo Production (IVEP) 

The Ethics Committee of the Federal University of Pará (CEUA/UFPA, 2024) determined that 
approval was not required for samples obtained from deceased animals. Ovaries were sourced 
from a government-approved slaughterhouse in accordance with established procedures. The 
processing of samples for IVEP was conducted following ethical considerations and procedural 
guidelines. Each biological replicate sequenced in this study was obtained from three IVEP routines. 

Buffalo crossbred ovaries were transported in 0.9% sodium chloride solution within a two-
hours timeframe at room temperature. In the laboratory, follicular fluid was aspirated from 
antral follicles (2-8 mm diameter) using a syringe attached to an 18Ga needle. A total of 1142 
Cumulus Oophorus Complexes (COCs) displaying homogeneous cytoplasm and three or more 
layers of compact cumulus cells were selected (Leibfried and First, 1979), and in vitro matured 
according to Da Costa et al. (2016). From the cohort that underwent in vitro maturation for first 
polar body evaluation (n=616), 410 were considered metaphase II oocytes (72%, ±3.34 s.d.). 
Zona pellucida was removed with 1.5 mg/ml pronase (Merck KGaA, Darmstadt, Germany), and 
MII oocytes were stored in RNAlater® solution (Ambion®, Thermo Fisher Scientific Inc., 
Waltham, MA) at -80°C until mRNA isolation (See Supplementary Figure 1a). 

A total of 526 COCs in vitro matured oocytes followed in vitro fertilization and embryo 
culture. Frozen semen from a proven fertility buffalo underwent processing with a 
discontinuous density gradient Percoll column (GE Healthcare Bio-Sciences, Uppsala, Sweden), 
and in vitro fertilization according to Parrish et al. (1988). After 24 hours, presumptive zygotes 
were incubated in a cumulus cell monolayer in 100-µL droplets of synthetic oviductal fluid (SOF) 
medium with modifications (Holm et al. 1999). Drops were overlaid with sterile mineral oil and 
incubated at 38.5°C in a 5% CO2, 20% O2, and 75% N2 atmosphere in humidified air. Blastocyst 
development was assessed on the 7th day (21.3%, ±4.18 s.d., n=110 blastocysts). Seventy 
hatched blastocysts of grade 1 and 2 quality, meeting International Society of Embryo Transfers 
criteria, were selected based on aspects like spherical form, the well-defined blastocele, inner 
cell mass, and absence of zona pellucida (Stringfellow and Seidel, 1998). These hatched 
blastocysts were stored in RNAlater® solution at -80°C until the mRNA isolation (See 
Supplementary Figure 1b). 
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Library Preparation, Sequencing, and Data analysis 

Two biological replicates each comprising pools of 205 metaphase II oocytes and 35 hatched 
blastocysts were sequenced. mRNA isolation was performed using Dynabeads© mRNA Direct 
Micro Kit (Life Technologies, Carlsbad, CA, USA) and single-end barcoded libraries were 
prepared with the Ion Total RNA-Seq Kit v2 (Life Technologies) following the manufacturer’s 
instructions. Each library underwent amplification, quantification on Qubit® 2.0 Fluorometer 
(Life Technologies) and further sequenced on the Ion ProtonTM System (Life Technologies). 

RNA-seq data underwent trimming and filtering with a minimum PHRED quality score 
threshold of 20, using the FASTX-Toolkit (Hanon Laboratory, 2010), and visualization was 
performed with the FastQC tool (Babraham Bioinformatics, 2016). The torrent mapping 
alignment program (TMAP, Life Technologies) was employed to map the reads to the Bos taurus 
reference genome assembly (Bos_taurus.UMD3.1, Ensemble, release 87), allowing for two 
mismatches with default parameters. The combination of Burrows-Wheeler Aligner (BWA), 
Sequence Search and Alignment by Hashing Algorithm (SSAHA), and Super-maximal exact 
matches (SMEM) algorithm was configured using the “mapall” function to obtain optimal 
alignments (Torrent Suit Software, 2016). Mapping and coverage were visualized using CLC 
Genomics Workbench 4.7.2 software (QIAGEN Bioinformatics, Aarhus, Denmark). All RNA-seq 
data generated in this study have been deposited, and links to the BioProject accession number 
PRJNA832476 can be found in the DDBJ BioProject database (NIH, 2022). 

Gene Expression and GO Enrichment Analysis 

To determine the total number of genes and perform Gene Ontology (GO) enrichment 
analysis, each biological replicate was analyzed individually with Cufflinks (Trapnell et al., 2010) 
for estimating relative transcript abundance. Default parameters and the Bos taurus UMD3.1 
reference genome were used. Assemblies of each replicate were merged into the merged.gtf file 
using the Cuffmerge tool. Subsequently, the Cuffdiff tool was run using merged.gtf. Read counts 
were normalized using the Reads Per Kilobase Million (RPKM) method from the gene_exp_diff file, 
and genes with RPKM > 0.4 were considered expressed (Ramsköld et al., 2009). Differentially 
expressed genes (DEG) were determined using HTSeq Count with union mode for read counting 
(Anders et al., 2015). Normalization and testing for differential expression were performed using 
the DESeq2 package (Bioconductor, 2001), based on the negative binomial distribution 
(Love et al., 2014). The false discovery rate was adjusted to 0.05, and genes with an adjusted p-
value ≤ 0.05 were considered as differentially expressed (Benjamini and Hochberg, 1995). 

Similarity analysis among samples was based on the Euclidean distance calculation, and 
hierarchical gene cluster analysis was generated using regularized logarithm transformation. 
Coding DNA Sequences (CDS) were obtained through the BioMart tool in the Ensembl database 
for enriched gene ontology categories. CDS data were uploaded to the GO FEAT tool, a free web 
platform (GO FEAT, 2017), which attributes functional annotation based on sequence homology 
with data in NCBI, Kegg, InterPro, Uniprot, Pfam and SEED databases (Araujo et al., 2018). 

Preservation Module Statistics to compare Buffalo and Bovine Transcriptomic Profiles 

The RNA-seq data of bovine was retrieved from the GEO platform (accession number 
GSE52415), selected based on the similarity of IVEP conditions with the present study 
(Graf et al., 2014). Data preprocessing involved aligning both buffalo and bovine 
transcriptomes using the same reference genome and normalizing expression data using the 
VST method. The treated data were used to build independent co-expression networks for 
buffalo and bovine in the WGCNA package within the R program (Langfelder and Horvath, 
2008). Briefly, adjacency matrices were built with a soft threshold of 20, and these matrices 
were employed to calculate the similarity between co-expression forces, resulting in a 
topological overlap matrix. The Dynamic Hybrid Tree Cut algorithm delineated the branches of 
the clustering tree, that means the co-expression modules. Eigengene modules, representing 
the main components of each module, were then used to quantify the similarity between the 
expression profiles of the modules. Modules with very similar expression profiles (correlation 
of 0.75, default value) were joined and represented in a dendrogram. The co-expression 
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networks underwent analysis for the correlation of the eigengenes modules, with those 
exhibiting a correlation greater than 0.9 and p-value < 0.05 considered specific stages. 

To access the preservation of buffalo co-expression modules in bovine, the 
modulePreservation function of the WGCNA package was performed (Langfelder et al., 2011). 
The Z-summary value, indicating module preservation, was calculated, where a Z-summary 
value > 10 denotes strong preservation, Z-summary value between 2 and 10 indicates 
moderate preservation, and Z-summary < 2 denotes poor preservation. Gene ontology of the 
co-expression modules was performed using GO.db and AnnotationDBI packages 
(Bioconductor, 2001) within the R program. 

Results 

General Characterization of Transcriptome Profiles in Buffalo’s Oocytes and Blastocysts 

From the total sequenced reads for oocytes (8,014,809) and blastocysts (27,902,704), 
approximately 90% (7,252,174 and 24,321,010, respectively) were mapped to the reference 
genome. Altogether, oocytes and blastocysts expressed 13,976 genes, representing 63% of 
the bovine genome (22,000 genes) and the estimated buffalo genome (Rehman et al., 2021)   . 
Separately, oocytes expressed a total of 12,576 genes, and blastocysts a total of 10,049 
genes. Of these, 62% (8,649) were ubiquitously expressed between oocytes and blastocysts 
(Figure 1A). 

 
Figure 1. General characterization of transcriptome profiles of buffalo in vitro matured oocytes and blastocysts. 
(A) Venn diagram depicting all expressed genes (RPKM > 0.4). The intersection represents the ubiquitously 
expressed genes, while cracked areas denote unique genes for oocytes and blastocysts; (B) Classification of 
protein coding genes in embryos and oocytes based on cellular component ontology at level 4. 

Ubiquitously genes accounted for 86% of all genes expressed in oocytes (10,049), and 68,7% 
of all genes in blastocysts (12,576). These genes were classified as protein coding genes 
(94.17%), non-coding RNAs (1.75%), pseudogenes (3.76%) and new transcripts like (0.32%). 
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Protein coding genes ubiquitously expressed (8,144) were mainly associated with intracellular 
components (32.48%), plasma membrane (28.36%), nuclei (13.7%), extracellular exosome 
components (10.14%), and mitochondrial, Golgi apparatus, endoplasmic reticulum and 
extracellular components (15%). These protein coding genes were related to 362 biological 
functions, with 20% (1,729 genes) dedicated to cell maintenance functions such as translation, 
transcription, intracellular protein transport, signal transduction pathways mediated by 
GTPase, apoptosis regulation, cytoskeletal organization, DNA repair, replication, and chromatin 
remodeling. Moreover, blastocysts exhibited an abundance of non-coding RNAs (4.1%) 
compared to oocytes (1.72%), which may be related to their higher transcriptional activity. 

Characterization of genes exclusively expressed in oocytes and blastocysts 

Exclusively expressed or unique genes are particularly significant for specific biological 
functions within a certain cell type (Figure 1A). Oocytes demonstrated 1,400 unique genes, 
constituting 14% of all expressed genes (10,049), while blastocysts exhibited 3,927 unique 
genes, representing 32% of all expressed genes (12,576). The subsequent analysis focused on 
unique genes related with specific biological functions. 

In oocytes, 224 unique genes were identified, contributing to 11 biological functions related 
to embryo development (SLC18A2, SOX*, CDKN1C), cellular differentiation (CCDC88A, SFRP1, 
MEF2C), regulation of signaling cascades such as JAK-STAT (FLRT*) and MAPK (PELI2), and 
regulation of transmembrane transport (CFTR, AKAP6, GABR*, GRIN2A, SORT1). 

In contrast, blastocysts exhibited 2,200 unique genes across 107 biological functions. These 
functions encompassed RNA and protein processing, differentiation, cellular proliferation, 
embryo development, signaling pathways such as TGFβ and BMP, fatty acids and lipids 
metabolic pathways, and regulation of cytokines (See Supplementary Tables). The cellular 
component ontology analysis supported these biological functions, revealing that 33% of 
oocyte-unique genes encoded proteins located in the plasma membrane, suggesting roles in 
signaling and transmembrane transport. Conversely, 35% of embryo-unique genes were 
related to exosome-contained proteins, indicating cell-signaling activity and the exchange of 
molecules between embryoblasts and/or extracellular media (Figure 1B). 

Characterization of Differentially Expressed Genes (DEG) and strongly variable genes 

Among the ubiquitous genes, 4,153 were identified as Differentially Expressed Genes 
(DEG), with 3,309 being induced and 844 repressed between buffalo oocytes and blastocysts. 
These DEG were related to 200 biological functions, including gene expression regulation, 
intracellular transport of proteins, signal transduction pathways, and cytoskeletal 
organization. The dissimilarity between oocytes and blastocysts was evident in the Euclidean 
distance map, resulting in the clustering of them into separate groups, highlighting their 
distinct expression profiles. 

The analysis also identified the strongly variable genes among the DEG. Using Hierarchical 
Cluster and Heatmap analysis (Figure 2), genes with the highest fold-change (above 11) were 
selected and categorized into two groups: Group 1, comprising genes highly induced in 
embryos and repressed in oocytes, and Group 2, including genes highly induced in oocytes and 
repressed in embryos (Table 1). 

Comparison of gene co-expression networks of buffalo and bovine 

No specific modules were identified for buffaolo oocytes (r >0.9, p<0.05). However, for 
blastocysts, seven modules of co-expressed genes were identified in buffalos, with four 
modules showing strong preservation (Zsummary > 10) and three modules showing weak 
preservation (Z-summary < 2) in the bovine counterpart. According to gene ontology, the 
modules strongly preserved in bovine counterparts were related to exosome components, 
steroid metabolism, cell proliferation, and morphogenesis. In contrast, the weakly preserved 
modules were linked to the cell cycle and amino acid transport (Figure 3). 



RNA-seq of oocytes and blastocysts of buffalo 
 

 

Anim Reprod. 2024;21(2):e20230131 6/15 

 
Figure 2. Hierarchical cluster and Heatmap of Differentially Expressed Genes (DEG). Oocytes and embryos 
are grouped into two clusters (n=4,153), with strongly variable genes showing a fold-change above 11. 

Table 1. Molecular and biological functions of the strongly variable genes. 

GROUP 1 – Induced in in vitro Blastocysts 
 Gene_symbol or Gene_id Molecular function Biological function 

1 
ANXA2, ANXA6, DSC2, 

S100A14 
calcium ion binding 

homophilic cell adhesion via plasma membrane 
adhesion molecules 

2 KRT18, AHNAK RNA binding 
negative regulation of the apoptotic process, 

regulation of RNA splicing 

3 
ENSBTAT00000022731.4, 
ENSBTAT00000022269.3 

phosphatase activity regulation of phosphatase activity 

4 APOA1 cholesterol transporter activity 
glucocorticoid metabolic process, integrin-

mediated signaling pathway 

5 APOA1 high-density lipoprotein particle binding 
lipoprotein biosynthetic process, high-density 

lipoprotein particle assembly 

6 ANXA6 ligand-gated ion channel activity 
apoptotic signaling pathway, negative regulation 

of sequestering of calcium ion 
7 ANXA2 phospholipase inhibitor activity phospholipase inhibitor activity 
8 PRSS8 serine-type endopeptidase activity positive regulation of sodium ion transport 
9 SLC34A2 transmembrane transporter activity In utero embryonic development 

GROUP2 – Induced in in vitro matured Oocytes 
 Gene_symbol or Gene_id Molecular function Biological function 

1 WEE2, ATP10D magnesium ion binding 
mitotic cell cycle, negative regulation  

of cyclin-dependent 
2 KPNA7 nuclear localization sequence binding NLS-bearing protein import into the nucleus 
3 ENSBTAT00000034504.3 ribonuclease activity regulation of RNA stability 
4 ENSBTAT00000034504.3 telomeric RNA binding telomere maintenance via telomerase 

5 UCHL1 
thiol-dependent ubiquitin-specific protease 

activity 
ubiquitin-dependent protein catabolic, negative 

regulation of MAP kinase activity process 

6 BMP15 
transforming growth factor beta receptor 

binding 
BMP signaling pathway, granulosa cell development 

7 ENSBTAT00000000819.5 translation factor activity, RNA binding negative regulation of cytoplasmic translation 

8 ENSBTAT00000065334.1 
transcription factor activity, sequence-

specific DNA binding 
regulation of transcription, DNA-templated 

9 NLRP14, NLRP8, WEE2 ATP binding 
Spermatogenesis, negative regulation of cyclin-

dependent protein serine/threonine kinase activity 
10 ZP2, ZP4 - binding of sperm to zona pellucida 
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Figure 3. Preservation of buffalo co-expression modules in bovine and Gene Ontology. The brown 
(exosome component), blue (steroid metabolism), cyan (cell proliferation), and steelblue (morphogenesis) 
modules exhibited Z-summary > 10, indicating strong preservation. The orange and dark red (cell cycle) 
and salmon (amino acids transport) modules show Z-summary < 2, indicating weak preservation. Gene 
ontology results are provided for each module. 

Discussion 
This study delves into the transcriptomic profiles of buffalo oocytes and in vitro produced 

blastocysts. The total number of genes expressed in buffalo aligns closely with previous reports 
in cattle, ranging from 10,494 to 13,327 genes in in vitro matured oocytes (Graf et al., 2014), 
and from 11,501 to 13,724 genes in blastocysts (Chitwood et al., 2013; Graf et al., 2014) . 
Remarkably, oocytes and blastocysts collectively express around half of the buffalo genome 
(Rehman et al., 2021) , and mirrors previous RNA-seq results in cattle , humans, and mice 
(Xue et al., 2013; Jiang et al., 2014) . The overlap in expressed genes between oocytes and 
embryos, encompassing 62%, primarily revolves around cellular maintenance functions. This 
concurs with existing report indicating that tissues from humans and mice might share around 
75% of mRNAs encoding proteins despite their diverse functional roles (Ramskold et al., 2009). 

In Vitro maturation related genes expressed in buffalo oocytes 

Buffalo oocytes exhibit gene expression linked to plasma membrane functions, 
encompassing ligand-dependent receptors for estrogen (SFRP1) and gamma-aminobutyric acid 
(GABR), protein transport channels (SORT1), amino acids (GLRA3), cholesterol (CFTR) and calcium 
(AKAP6, GRIN2A). Notably, genes related to the cell cycle regulation through MAP kinase (UCHL1) 
and cyclins (WEE2, NLRPs), which promote the maintenance of oocyte arrest until fertilization 
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and are correlated with oocyte's competence (Tripathi et al., 2010) . Also, transcripts for 
transcriptional regulation, translation, and RNA stability were strongly induced been identified 
as ribonuclease, telomeric, translation, and transcription factors. These transcripts may be 
related to the regulation of the mRNA storage in oocytes which are known to trigger early 
embryonic development mechanisms (Tadros and Lipshitz, 2009; Labrecque and Sirard, 2014) . 

Another genes related to cell signaling (BMP15), cell cycle (UCHL1, WEE1, NLRPs), RNA stability 
regulation (KPNA7, ENSBTAT*), and fertilization (ZP2, ZP4) were strongly induced in buffalo 
oocytes otherwise repressed in blastocysts. Likewise, karyopherins were highly expressed in in 
vitro matured oocytes and gradually decreased until the blastocyst stage in pigs. KPNA7 gene 
encodes a receptor for translocation through nuclear pores and the inhibition of its translation 
by interference RNA in oocytes decreased blastocyst formation in pigs, thus indicating its role 
in oocyte competence and embryonic development (Wang et al., 2012) . BMP15, a growth factor, 
influences granulosa cells, promoting oocyte maturation (Macaulay et al., 2016) and its 
supplementation in maturation media increased blastocyst formation in cattle (Sudiman et al., 
2014) . While ZP2 and ZP4 play a crucial role in sperm binding to zona pellucida and fertilization 
(Yanagimachi, 1981). Their expression increases along the oogenesis and has been correlated 
with the oocyte morphological quality (Canosa et al., 2017) . 

Development related genes expressed in buffalo blastocysts 

Buffalo blastocysts expressed genes related to cell signaling such as Bmp (FAM83G, TGFB3, 
RGMB, NODAL, RGMA, DSG4, MAPK3, MEGF8, GDF7), the transforming growth factor beta (TGF-β) 
superfamily, Wnt (WNT6, WNT11, WNT5A) and Notch pathways (NOV, PDCD10, SLC35C2, ZMIZ1). 
These pathways play pivotal roles in regulating proliferation, stem cell maintenance, 
differentiation, and morphogenesis, influencing lineage decisions in the blastocyst 
(Bernatik et al., 2017; Menchero et al., 2017) . The LRP5 encodes an LDL receptor in the Wnt 
pathway, while NODAL is a member of the TGF-β superfamily, both genes contribute to inner 
cell mass and epiblast development (Granier et al., 2011; Tribulo et al., 2017) , moreover 
embryos that failed to express them do not progress after gastrula, resulting in fetal death in 
mice (Conlon et al., 1994; Kelly et al., 2004) . 

Proliferation-related genes are usually linked to metabolic regulation, ensuring the 
production of macromolecules and metabolic energy before mitosis (Vander Heiden et al., 
2009) . Buffalo blastocysts expressed the mTOR complex activator (LAMTOR1) also an amino-
acid carrier (SLC34A2) which activate the mTOR (mammalian target of rapamycin) signaling 
pathway (Rebsamen et al., 2015) . mTOR induces aerobic glycolysis and increases the uptake of 
nutrients resulting in proliferative behavior (Murakami et al., 2004; Redel et al., 2015; 
Spate et al., 2015) . Lipid metabolism genes, including leptin transmembrane receptors (LEP), 
low-density lipoproteins (LRP5), and enzymes for fatty acid modification (FA2H) and oxidation 
(ACOT8) were also expressed. Notably, the APOA1 gene was strongly induced in buffalo and 
encodes an apolipoprotein-A1 major component of high-density lipoprotein. The knockdown 
of APOA1 was correlated with fewer implantation sites in mice females (Jia et al., 2016) . 

Buffalo blastocysts also expressed genes related to interferon-γ and interleukin production 
(RHGEF2, CD226, PRKD2, MAVS), secretion (FAR4, LRRC32, RGCC), embryo development and 
implantation (KRT18, ANXA2, S100A14, SLC34A2, PRSS8, ANXA2, ENSBTAT*). Studies using RNA 
interference to disrupt keratin 18 (KRT18), the cell adhesion molecule annexin A2 (ANXA2), and 
metalloproteinase (S100A14) mechanisms were detrimental to blastocyst formation in bovine 
(Goossens et al., 2010) and decreased the number of in vivo implantation sites in mice 
(Wang et al., 2015). S100A14, ANXA2, serine protease (PRSS8), and amino acid transmembrane 
transport (SLC34A2) were previously reported to play a role in implantation (Shibasaki et al., 2009; 
Ruan et al., 2012; Wang et al., 2015). In mice, embryos secreted the serine protease trypsin that 
triggered cell signaling and decidualization in endometrial cells (Ruan et al., 2012). ANXA2 
interacts with S100A14 creating a protein complex, which may facilitate cell adhesion interactions 
for implantation (Myrvang et al., 2013). These genes may be related to the mechanism of 
implantation in buffalo, as blastocysts interact with endometrium cells through the secretion of 
signal molecules, regulating implantation and conceptus development (Bazer, 2013). 
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Comparison of gene co-expression networks of In Vitro blastocysts of buffalo and bovine 

Herein, gene co-expression networks and preserved modules analysis were employed to 
compare buffalo and bovine, particularly their gene co-expression relations. This methodology, 
previously applied in pre-implantation embryos of human, mice, bovine, marmoset, and goats 
(Xue et al., 2013; Jiang et al., 2014; Boroviak et al., 2018; Li et al., 2020), highlighted evolutionarily 
conservation in the embryonic development program across mammalian. Buffalo and bovine 
blastocysts exhibited a strong correlation in co-expression modules related to exosome 
components, steroid metabolism, cell proliferation, and morphogenesis. This suggests that these 
cellular functions are orchestrated by well-preserved clusters of genes, interacting in a co-
expression network during embryo development. 

The strong preservation of the exosome component module, implicated in immune 
stimulation and embryo implantation (Chen et al., 2022), underscores its crucial role in both 
buffalo and bovine blastocysts. Furthermore, the strong preservation of cell proliferation, 
morphogenesis, and steroid metabolism modules aligns with their correlation to embryo 
formation and tissue differentiation (Basson, 2012), also cell growth and division as steroid 
biosynthesis is essential for generating new cell membranes (Singh et al., 2013). 

However, poor preservation of certain modules indicates differential co-expression 
relations during embryo development. For instance, the cell cycle module was poorly 
preserved, potentially explaining differences in the kinetics of embryo development between 
buffalo and bovine (Gasparrini et al., 2014). Similarly, the amino acid transport module, critical 
for cell homeostasis (Zhang et al., 2017) and signaling pathway activation (Kim et al., 2011; 
Rebsamen et al., 2015; Redel et al., 2015). 

Conclusion 

In conclusion, this study provides a comprehensive transcriptome profile of in vitro matured 
oocytes and blastocysts from buffaloes. Prominent candidates for in vitro oocyte competence 
include BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4. Similarly, genes KRT18, ANXA2, 
S100A14, SLC34A2, PRSS8, ANXA2, LRP5, NODAL, MEGF8, LAMTOR1, APOA1, LEP, and ANXA6 emerge 
as potential candidates for in vitro embryo competence. The strong preservation of gene co-
expression networks in blastocysts suggests a similarity in embryonic development programs 
between buffalo and bovine species. 
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Supplementary material accompanies this paper. 
Supplementary Table 1. Identification of unique genes with specific biological functions in 

in vitro matured buffalo. 
Supplementary Table 2. Identification of unique genes with specific biological functions in 

buffalo in vitro produced blastocysts. 
Supplementary Figure 1. Morphological quality of metaphase II oocytes and hatched 

blastocysts produced in vitro. (A) Metaphase II oocytes after removal of cumulus cells and zona 
pellucida. The first polar bodies visible in the photo were indicated by the black arrows. (B) A 
droplet from the in vitro culture dish on the 7th day of embryo development, showing hatched 
blastocysts. 
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