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Abstract

We tested the effects of centrifuging in vitro matured bovine oocytes for varying times on embryo de-
velopment and cryotolerance. The oocytes were divided into four groups: control (GC) and centrifuged
groups [5433 x g: G5, n =463 (5 min); G10, n =461 (10 min); and G15, n =483 (15 min)]. After centrifuga-
tion, the oocytes underwent in vitro fertilization for embryo production. Two parameters were evaluat-
ed: i) embryonic development (n = 1,878), and ii) cryotolerance evaluation (survival and hatching rates;
n = 303). The CG and G10 groups showed blastocyst rates of 42.25% and 45.77%, respectively, higher
than those of the other groups (p = 0.02). The hatching rate was equal (p > 0.05) in CG (91.96%), G5:
(87.74%), and G10: (95.73%) groups; however, it was lower in G15: 77.06% (p < 0.01). In the CG group,
65.88% of cryopreserved embryos survived, which was different (p < 0.05) from that in G5 (82.02%) and
G10 (82.28%) (p > 0.05). Post-freeze hatching percentage was 74.0%, 87.7%, and 47.7%, in G5, G10, and
G15, respectively, which was significantly greater than that in CG (p < 0.01; 26.8%). Post-freeze hatching
percentage in only G10 matched that of the non-cryopreserved embryos CG (p = 0.06, 92%). We conclude
that oocyte centrifugation for 10 minutes was efficient for in vitro embryonic development and cryopres-
ervation of cattle embryos.
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Introduction

Lipids are essential cellular biomolecules that are involved in the initial metabolism of embryos,
providing energy for embryonic development (Prates et al., 2014). Excessive accumulation of
intracellular lipid droplets may cause cellular damage, resulting in low-quality embryos produced
invitro (Prates et al., 2014). The stressful conditions to which the oocyte may be subjected prior
to embryonic development, as well as the conditions of the culture medium during embryo
development, are likely the causes of the high lipid content (Sanches et al., 2013; Paschoal et al.,
2017). Because of the relationship between lipid content and cryotolerance in bovine, different
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strategies have been studied (Sudano et al., 2011). Although these strategies often result in a
reduced lipid content, they can adversely affect embryonic gene expression and morphology
(Annes et al., 2023), and enhanced cryotolerance is not always achieved.

Physical centrifugation has been used to redistribute cytoplasmic lipids in immature bovine
and porcine oocytes (Chung et al., 2001; Hara et al., 2005), as well as in early-stage porcine
embryos; however, when applied to more advanced embryonic stages, it resulted in lower
blastocyst rates (Li et al., 2009). Although Chung et al. (2001) also applied centrifugation to in vitro
matured bovine oocytes at the Ml stage, their study focused on different centrifugation speeds
and did not assess cryotolerance. To our knowledge, no previous studies have investigated the
impact of centrifugation duration on lipid redistribution and subsequent cryotolerance of bovine
oocytes matured in vitro. Therefore, in this study, we evaluated three centrifugation time-based
protocols for bovine oocytes, aiming to modulate the lipid content of in vitro produced embryos
and determine the effects on embryo survival after cryopreservation.

Methods

Animals

This study was conducted in accordance with the Ethics Committee on Animal Experimentation
of the State University of Londrina based on Federal Law 11,794 on October 8, 2008. All animal
experiments were performed in accordance with the ARRIVE guidelines, the U.K. Animals
(Scientific Procedures) Act of 1986, and associated guidelines (EU Directive 2010/63/EU). The
study protocol was approved by the Ethics Committee on Animal Experimentation of the State
University of Londrina (CEUA n° 031.2024; OF. CIRC. CEUA n°® 061/2024).

Bovine ovaries (n=248) were obtained from the commercial slaughterhouse from females with
a predominantly Bos taurus indicus phenotype of the Nellore breed. The ovaries were collected,
packaged, and transported to the laboratory in 0.9% (w/v) saline solution at 30 and 35 °C. Only
follicles with a diameter of 2-8 mm were aspirated with hypodermic needles (30 x 8; 21G)
attached to 10 mL syringes for the recovery of cumulus-oocyte complexes (COCs). The collection
of COCs occurred within 4 hours after the ovaries were obtained from the slaughterhouse.

In vitro embryo production (IVP) and experimental design

The procedures for in vitro embryo production were conducted according to the protocol
described by Costa et al. (2024), with minor modifications. For in vitro maturation (IVM), only
COCs classified as quality | or Il based on criteria described previously (Seneda et al., 2001) were
used. After 24 hours of maturation, the COCs were then randomly divided into four groups
(20 oocytes per group): CG - Control group (not centrifuged); G5 - centrifugation at 5433xg for
5min; G10 centrifugation at 5433xg for 10 min or G15 centrifugation at 5433xg for 15 minutes.
All centrifugations were performed using a MiniSpin® centrifuge (Eppendorf, 2020; radius =6 cm)
at 9000 rpm, resulting in a relative centrifugal force (RCF) of 5433 x g. After this step, oocytes
were subjected to in vitro fertilization using semen from a single Nelore bull to control for sire-
related variability across replicates. The entire experiment was conducted over ten independent
replicates involving ovary collection and in vitro embryo production (IVP) procedures.

Two evaluations were then conducted: i) assessment of embryonic development- the oocytes
from all groups (n=1878) were subjected to in vitro fertilization and in vitro culture; ii) evaluation of
cryotolerance- total blastocyst (n=303; quality 1) from the four treatments were cryopreserved
using a slow freezing method (Dominium’s Programmable Cellular Freezer, BIOCOM®). The
methodology used was based on Sanches et al., 2016, with minor modifications. Post-thaw
culture was performed in SOF medium supplemented with 2.5% fetal bovine serum (FBS) and
30 mg/mL fatty acid-free BSA, under the same conditions used for pre-freezing embryo culture.
Embryo survival was assessed 12 hours after thawing. Post-thaw blastocysts were then cultured
for 72 hours in SOF medium supplemented with 2.5% fetal bovine serum (FBS) and 30 mg/mL
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fatty acid-free BSA. Hatching rates were evaluated at the end of the 72-hour culture period
(Sanches et al., 2016).

Additionally, the non-cryopreserved control group (CG*) consisted of blastocysts from the
CG group that were produced within the same ten replicates as the experimental groups. These
embryos were not subjected to cryopreservation and remained in culture during the same
period. Cryopreserved embryos were frozen and immediately thawed, then cultured in parallel
with the CG* group under identical conditions to allow simultaneous evaluation.

The assessment schedules for embryo development and cryotolerance were standardized
as follows: cleavage rate was evaluated on Day 3, blastocyst formation on Day 7, and hatching
rate on Day 9 of in vitro culture. Cryopreservation was performed on Day 7 for embryos that
had reached the blastocyst stage.

Statistical analysis

The Chi-square test was used to compare the rates of embryonic cleavage, blastocyst
production, hatching, embryonic survival, and hatching after thawing. Analyses were performed
using the SAS software, version 9.1. Differences were considered significant when p < 0.05.

Results

There was no significant difference in cleavage rates among the groups. However, the
proportion of blastocysts was lower in the G5 and G15 groups compared to CG and G10. The
hatching rate of 77.0% in the G15 group significantly differed (p < 0.0001) from that of all other
groups (Table 1).

Table 1. Embryonic development after in vitro fertilization of mature bovine oocytes subjected to lipid
translocation using centrifugation at 5433 x g for different times.

Centrifugation Oocyte (n) Cleavage % (n) Blastocyst % (n) Hatching % (n)

CaG - 471 77.07 (363/471) * 42.25(199/471)“ 91.96 (183/199) “
G5 5 min 463 73.65 (341/463) « 33.48 (155/463) " 87.74 (136/155) «
G10 10 min 461 74.19 (342/461) « 45.77 (211/461) * 95.73 (202/211) *
G15 15 min 483 71.22 (344/483) ¢ 35.20(170/483)F 77.06 (133/170) *

(-): Indicates that the technique specified was not performed in the group. *fDifferent letters indicate statistically
significant differences (p < 0.05) between groups in the same column.

Considering their morphological quality, the blastocysts from the control group exhibited
lower tolerance to cryopreservation compared to those from the other groups. Assessment
of blastocyst re-expansion 12 hours after thawing revealed a statistically significant difference
between the control group (CG) and both G5 (p=0.0165) and G10 (p=0.0187) (Table 2).

Table 2. Evaluation of the 12-h re-expansion and 72-h hatching rates (post-thaw) in bovine blastocysts
produced in vitro with bovine oocytes subjected to lipid translocation by centrifugation at 5433 x g.

. - - Reexpansion Hatching
Group Centrifugation Blastocyst Cryopreservation 12h % 72 h %

CG - ( NA 92.00 (46/50) «
CG+ - 85 Yes (+) 65.9(56/85) ¢ 26.8 (15/56) ¢
G5+ 5 min 89 Yes (+) 82.0 (73/89) b+ 74.3.(54/73) *
G10+ 10 min 79 Yes (+) 82.3 (65/79) P+ 87.7 (57/65) “*
G15+ 15 min 80 Yes (+) 78.8 (63/80) ** 47.7 (30/63) 8

(-) indicates that the specified technique was not performed in the group; (+) fresh, non-cryopreserved group. Labo-
ratory production control. fDifferent letters indicate a statistically significant difference (p < 0.05) between groups in
the same column.

The hatching rates of blastocysts after freezing (72 h post-thawing) showed significant
differences between CG and the G5, G10, and G15 groups. Notably, only the 10-minute
centrifugation group (G10) exhibited a hatching rate similar to the non-cryopreserved control
group (CG*; p = 0.0694).
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Discussion

Centrifugation proved useful in overcoming the limitations of cryopreservation of in vitro
produced embryos, as itimproved post-freezing embryo survival. In the present study, blastocysts
derived from centrifuged oocytes showed higher post-thaw re-expansion rates compared to
those from the non-centrifuged control group, and also compared favorably with reported rates
by Diez et al. (2001) in cattle embryos that underwent centrifugation and micromanipulation-
based delipidation at the zygote stage, including a group that received only centrifugation
combined with cytochalasin treatment (30-40% re-expansion). Notably, 72 h after thawing,
the embryos from the oocyte group centrifuged for 10 min showed similar hatching rates to
those of the non-cryopreserved control group — a significant result for developing strategies
to enhance embryo cryotolerance.

Given the relevance of improving cryopreservation techniques, previous experiments in porcine
embryos used high-speed centrifugation (12,000-16,000 x g) to promote lipids displacement
(Nagashima et al., 1995; Ushijima et al., 2004).However, subsequent findings suggested that
such high centrifugation forces could negatively affect the structural integrity of in vitro
matured bovine oocytes (Chung et al., 2001) and porcine immature oocytes (Hara et al., 2005),
reinforcing the advantage of using a lower speed (5433 x g), as applied in the present study.
While Chung et al. (2001) also applied centrifugation to in vitro matured bovine oocytes, their
study investigated different centrifugation speeds and did not evaluate embryo development
or cryotolerance. In contrast, our work focused on the impact of centrifugation duration and
its effects on post-thaw embryo survival, representing a novel contribution to the field.

Additionally, Li et al. (2009) showed that earlier application of centrifugation during porcine
embryo development (2-4 cell stages) improved blastocyst rates, but their approach involved
cleavage-stage embryos and trypsin treatment, differing from the oocyte-stage protocol we
evaluated. Compared with these previous studies, the centrifugation method described here
offers advantages in terms of simplicity, cost-effectiveness and most importantly, the generation
of cryopreserved embryos with survival and hatching outcomes comparable to those of fresh
embryos.

Conclusion

In conclusion, the present study demonstrated that 10 minutes of oocyte centrifugation
was efficient for the improvement of in vitro embryonic development and cryopreservation of
cattle embryos.

Data availability statement

Research data is available in the body of the article.
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