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Abstract 
 

Environmental conditions experienced during 
early embryonic development influence growth, 
metabolism, and gene expression of the embryo as well 
as the epigenetic profile of the offspring. The 
environment of the early embryo consists of the luminal 
fluid within the oviduct and uterus and the epithelial 
cells composing this fluid. Whether the embryo is able 
to shape its own microenvironment by interacting with 
the epithelial lining of the oviduct/uterus and which 
factors potentially interfere with or regulate these 
interactions remains to be elucidated. As early 
embryonic signals and the respective maternal responses 
are subtle and local events, it is challenging to study 
them in vivo. Therefore, adequate in vitro-models 
optimally mimicking the contact zone between the 
maternal reproductive tract and the early embryo are 
needed to a) elucidate basic mechanisms involved in 
early embryonic development and b) reduce the number 
of experimental animals used for such studies. 
Functional epithelial cells are generally defined by a 
polarized distribution of organelles and proteins. Proper 
polarization is tightly connected with physiological cell 
behavior and in vivo-like reactivity of the epithelium. 
Therefore, this review summarizes current strategies for 
in vitro preservation of epithelial cell polarity. It 
presents recent advances in 3D culture of female 
reproductive tract epithelia and embryo-epithelial co-
cultures. A special emphasis is set on 
compartmentalized culture systems, powerful tools for 
studying early embryo-maternal interactions in vitro. In 
such systems, cultured epithelial cells are manipulable 
from their basolateral as well as their apical cell pole, 
allowing concomitant application of embryonic as well 
as maternal effectors from the appropriate cellular 
compartment. 
 
Keywords: embryo-maternal interactions, endometrium, 
oviduct, three dimensional cell culture models.  
 

Introduction 
 

Early embryos of eutherian mammals reside 
within the oviduct (species-specific up to the 4-cell, 8-
cell, morula or blastocyst stage) before they transition 
into the uterus. It is now well established that the 
environmental conditions experienced during early 
embryonic development (zygote to blastocyst stage) 
influence growth, metabolism, and gene expression of 

the embryo as well as the epigenetic profile of the 
offspring (recently reviewed by Fazeli and Holt, 2016; 
Rizos et al., 2017). 

So far, clear evidence is given for a mutual, 
reciprocal interaction between the female reproductive 
tract (FRT) and the developing conceptus during 
maternal recognition of pregnancy and implantation. 
However, the biological relevance of earlier interactions 
of the embryo with the upper FRT is still a matter of 
debate. 

Studies in litter bearing species like pigs and 
mice show that the oviduct responds to preimplantation 
embryos, long before the embryonic signal for maternal 
recognition of pregnancy (Lee et al., 2002; Alminana et 
al., 2012; Li et al., 2015). In the monovulatory cow, 
where only one single embryo resides in the oviduct, 
this could not be confirmed in vivo at the transcriptomic 
level (Maillo et al., 2015), but first hints exist for an 
early embryonic influence on the oviduct fluid proteome 
in this species (Maillo et al., 2016). There is clear in vivo 
evidence for early embryo-maternal communication in 
another monovulatory species, the horse, where 
embryonic prostaglandin E2 causes relaxation of the 
oviductal isthmus and allows selective transport of the 
embryo to the uterus (Weber et al., 1991; Freeman et 
al., 1992). Differential transcriptomic profiles between 
pregnant and non-pregnant oviducts also suggest an 
impact of one single early embryo on the innate immune 
response in the equine FRT (Smits et al., 2016).  

However, whether the embryo is actually able to 
shape its own microenvironment by interacting with the 
epithelial lining of the oviduct/uterus and which factors 
potentially interfere with or regulate this fine-tuned 
interactome (Fazeli, 2011) remains to be elucidated.  

As early embryo-maternal interactions are 
presumably subtle and local events, they are challenging 
to study in vivo (not only, but especially in 
monovulatory species), both from a technical and an 
ethical point of view. Biological variation, very limited 
numbers of possible replicates and the unfavorable 
signal-to-noise ratio might hamper the success of such 
in vivo studies. 

Therefore, adequate in vitro-models optimally 
mimicking the contact zone between the maternal 
reproductive tract and the early embryo could help to 
elucidate basic mechanisms involved in early embryonic 
development and programming. At the same time such 
models reduce the number of experimental animals 
needed for basic research and might proof useful also 
for reproductive toxicity testing (Simintiras and 
Sturmey, 2017). 
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The environment of the early embryo 
 

The environment of the early embryo consists 
of the luminal fluid within the FRT and the epithelial 
cells composing this fluid. 

It is suggested that the oviduct and uterine 
luminal fluids represent the optimal milieu for the early 
embryo. Its basic composition has been analyzed with 
respect to protein composition, ion content and energy 
substrates using in situ and ex vivo techniques (reviewed 
in Leese et al., 2008). Differences in the fluid 
composition have been documented regarding the 
estrous cycle stage and sampling region. However, the 
mechanisms of oviductal and uterine fluid formation 
and its regulation are far from being understood.  

The epithelial cells assembling the luminal 
surface of the oviduct and uterus compose this fluid in 
accordance to the developmental needs of the embryo 
(Absalon-Medina et al., 2014) and directly get in 
contact with the early embryo.  

This contact zone is a simple epithelium which 
not only nourishes the early embryo but also provides 
protection from or clearance of unfavorable molecules 
and (in case of the oviduct) transport of the embryo 
towards the uterus.  
 

Epithelia of the FRT: developmental origin and 
structural hallmarks 

 
Oviduct and uterus both derive from a pair of 

Mullerian ducts (MDs), which consists of three 
elements: an inner epithelium layer, surrounding 
mesenchyme, and the external Mullerian coelomic 
epithelium. During MD development, the opening 
cranial end forms into the oviduct, and the caudal ends 
of left and right MD fuse and give rise to the uterus. 
Epithelia in the oviduct and uterus both develop from 
the MD epithelium, while the stromal compartment of 
uterus evolves from the MD-surrounding mesenchyme 
(Kurita, 2011).  

Epithelia are generally defined by a polarized 
distribution of organelles and proteins within each cell. 
The paracellular space between adjacent epithelial cells 
is sealed by cell-cell junctions at the apical part of the 
lateral plasma membrane. Especially tight junctions are 
essential for epithelial polarity and functionality as they 
form both a paracellular barrier (regulating selective 
paracellular permeability) as well as a barrier within the 
membrane which restricts the exchange of membrane 
components between apical and basolateral cell surface 
domains. In recent years it became evident that beside 
their role as simple diffusion barriers, tight junctions are 
cellular signaling platforms which are regulated by 
diverse physiological and pathological stimuli 
(reviewed in (Zihni et al., 2016). Loss of cellular 
polarity, in turn, is a pathological condition frequently 
seen in cancer development, which alters specific cell 
functions and responsiveness to external signaling 
events (Ellenbroek et al., 2012).  

The basal part of the cell membrane of an 
epithelial cell is attached to the basement membrane, 

which separates the epithelium from the underlying 
connective tissue. With this basolateral cell pole, it takes 
in systemic effector molecules and nutrients as well as 
molecules secreted by the connective tissue. In contrast, 
the contact to gametes or embryos takes place on the 
apical surface of the cell, which is morphologically and 
functionally different from its basolateral counterpart in 
terms of membrane properties and abundance of 
receptor molecules. 

Therefore, proper polarization of the epithelial 
cells in the FRT is tightly connected with their 
physiological behavior and in vivo-like reactivity 
towards systemic maternal as well as embryonic stimuli.  
 

Modelling the contact zone: oviductal and uterine 
epithelial cells in vitro 

 
Maintenance of epithelial polarity during 

culture is an important prerequisite for in vitro 
investigations concerning the fine-tuned interactions 
possibly taking place between the early embryo and the 
maternal organism. 

Under standard culture conditions (2D, 
adherent on cell culture plastic ware), which are most 
frequently used to explore embryo-maternal interactions 
in vitro, epithelial cells (primary or cell lines) from the 
FRT attach to the plastic surface and are submerged in 
medium. Even if cells build cell-cell contacts and a 
certain level of cellular polarization under such 
conditions, they receive nutrition from the apical pole. 
This leads to rapid adaptation processes within the cells 
and to marked changes in their morphological and 
functional integrity (Fig. 1A). Polarization, expression 
of marker genes and ciliation get lost (Danesh et al., 
2016). A well-known example for the loss of marker 
gene expression during in vitro culture is the oviductal 
glycoprotein 1 (OVGP1), one of the most abundant 
glycoproteins in the oviduct of most mammals (Coy et 
al., 2008). Under 2D culture conditions, OVGP1 is 
promptly down-regulated and cannot be triggered by 
ovarian steroids anymore (Briton-Jones et al., 2002, 
2004; Schoen et al., 2008; Danesh et al., 2016). 
 
Cell culture conditions preserving epithelial cell 
polarity in vitro 
 

Suspension culture 
 

Suspension culture (Fig. 1B) is frequently used 
for primary oviduct epithelial cells (OEC), especially 
for analysis of sperm binding in mammalian species (De 
Pauw et al., 2002; Waberski et al., 2005; Henry et al., 
2015). Cells are obtained by squeezing out or scraping 
off the oviduct epithelium, and later maintained in 
suspension culture dishes as cell clusters (also termed 
explants) with their cilia directed outwards. Suspension 
culture is a particularly useful tool for short-term 
experiments as it preserves oviduct specific 
characteristics for approximately 12 h before first signs 
of de-differentiation are observed (Rottmayer et al., 
2006).
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3D Organoids  
 

Epithelial cells cultured in extracellular matrix 
(ECM) substitutes can form three dimensional 
structures with a lumen (Fig. 1C). An organoid culture 
system from clonal cells was established from the 
human oviduct, which showed fully in vivo-like 
epithelial differentiation including OVGP1 expression 
(Kessler et al., 2015). Likewise, three dimensional 
human glandular endometrial cultures were recently 
developed, leading to highly differentiated, hormone-
responsive organoids, which secreted uterine marker 
proteins like glycodelin and osteopontin (Turco et al., 
2017). In these models stemness was maintained 
within the cell population and therefore allowed long-

term culture. Differentiation is induced via exogenous 
factors. Gland-like endometrial spheroids have also 
been used to study human endometrium-trophoblast 
interaction and trophoblast invasion (Buck et al., 
2015). However, manipulation of the organoid lumen, 
e.g. applying an embryo or embryonic effector 
molecules on the apical cell pole, is not possible. Yet 
such organoid cultures enable propagation of 
differentiated FRT epithelia in vitro (e.g. from one 
individual). Organoid cultures represent self-
organizing 3D systems which are genetically stable 
and contain progenitor and/or stem cells as well as 
differentiated cells. Therefore, they can be used as a 
substitute for freshly isolated primary cells in other 
culture systems. 

 

 
Figure 1. Schematic illustration of possible reception routes for embryonic signals and nutrition in different culture 
systems of epithelial cells. (A) Standard 2D adherent submerged culture; embryonic signals and nutrition from 
apical side. (B) Epithelial sphere in suspension culture; signals and nutrition from outside of the sphere (apical 
epithelial cell pole). (C) Epithelial 3D organoid; nutrition is provided from outside the organoid; embryonic signal is 
not applicable. (D) Compartmentalized culture system; nutrition from the basolateral side, embryonic signal could 
be given from the apical side. 
 

Compartmentalized culture systems  
 

In compartmentalized culture systems, cells are 
grown in inserts on either porous membranes or 
scaffolds (Fig. 1D). Placing the insert into the cell 
culture medium mimics the in vivo nutrient supply from 

the basolateral side of the cell, and thereby supports 
epithelial differentiation and polarization. The 
compartmentalized system can be used to grow cells 
submerged (liquid-liquid interface) with either the same 
or two different media in the basolateral and apical 
compartment (e.g. creating a serum gradient over the
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membrane). Porous filter supports can also be used to 
grow FRT epithelia at the air-liquid interface (ALI), i.e. 
with no medium in the apical compartment. The ALI 
method is primarily known from differentiated long-
term cultures of skin and airway epithelia. When 
applied to FRT epithelia, ALI culture systems 
engendered excellent long-term differentiation of 
oviduct (Levanon et al., 2010; Miessen et al., 2011; 
Gualtieri et al., 2012) and uterine epithelial cells 
(Munson et al., 1990; Classen-Linke et al., 1997). In 
general, as known for airway epithelia, ALI culture 
seems to better support differentiation of FRT epithelia 
than submerged conditions. Furthermore, ALI models 
allow acquisition and analysis of the luminal fluid 
created by the epithelia. Initial analysis of oviductal 
fluid surrogates obtained from ALI cultures showed 
apparent similarities to oviductal fluid in vivo 
(Simintiras et al., 2016; Chen et al., 2017). This makes 
the ALI approach a promising tool to investigate 
effectors regulating or modifying the environment of the 
early embryo. 

In compartmentalized culture systems, cell 
polarization can be further enhanced by coating the 
membrane or scaffold with ECM components like 
collagens (Munson et al., 1990; Chen et al., 2017). 
Especially collagen IV, a structural protein present in 
the apical lamina densa of the basement membrane, 
could facilitate the initial attachment rate of isolated 
cells during seeding and therefore prevent 
dedifferentiation due to excessive proliferation 
(Aumailley and Timpl, 1986). Also conditioning the 
basolateral medium with homo- or heterologous 
fibroblasts enhances the structural differentiation of the 
cultured epithelial cells (Munson et al., 1990; Ostrowski 
and Nettesheim, 1995; Miessen et al., 2011).  

 
3D models combining epithelial and stromal cells 
 

Stromal cells regulate cell fate, morphology, 
and function of epithelia through epithelial-
mesenchymal interactions (Cunha et al., 1985; Kurita et 
al., 2001). Interactions between epithelial and stromal 
cells are evident in the oviduct (Umezu and Tomooka, 
2004) as well as in the uterus, where they have been 
extensively studied in human models for decidualization 
and embryo invasion (reviewed in Weimar et al., 2013). 
Stromal cells seem to translate systemic signals within 
the maternal organism (e.g. from steroid hormones) and 
to modulate their effect on the epithelial lining (Pierro et 
al., 2001; Qi et al., 2012).  

Stromal cells can be co-cultured with epithelial 
cells in compartmentalized culture systems with or 
without ECM resembling scaffolds (e.g. hydrogel, 
agarose or matrigel; Fig. 2). While 3D models of the 
oviductal or luminal endometrial epithelium with the 
underlying stroma can relatively easily be constructed 
(Arnold et al., 2001; Simintiras et al., 2016; Fig. 2A, B), 
modeling the endometrium with both its glandular and 
luminal epithelium in 3D is a more complex endeavor. 

In contrast to the luminal epithelium, the glandular 
endometrial epithelium finds its niche within the 
interstitial tissue (Fig. 2C). To our knowledge, there is 
only one report documenting the capability of uterine 
epithelial cells to form both the endometrial luminal 
epithelium as well as glands in vitro. Primary epithelial 
endometrium cells were co-cultured with stromal cells 
seeded in fibrin-agarose and gland formation occurred 
spontaneously (Wang et al., 2012). 

More recent epithelial-stromal co-culture 
models are based on ex vivo ECM scaffolds as the de-
cellularized endometrium (Olalekan et al., 2017) or 
novel artificial scaffold structures (MacKintosh et al., 
2015) which provide a more in vivo-like 3D 
environment for the stromal cells. 
 
Perfused culture systems and microfluidic devices 
 

The FRT epithelium of most mammalian 
species undergoes dramatic morphological and 
functional changes throughout the estrous cycle. In the 
luteal phase (progesterone dominance), the epithelium 
exhibits a regressed status; conversely, cells re-enter 
proliferative status in the follicular phase (estradiol 
dominance), including a rise in epithelium height and 
increased secretory activity.  

However, the exact and time resolved impact 
of hormones (as well as many other dynamic systemic 
maternal cues) on luminal fluid formation and 
epithelium responsiveness to embryonic signals are not 
elucidated yet. Even if different stages of the estrus 
cycle can be mimicked in compartmentalized models of 
the FRT epithelium (Chen et al., 2013), these systems 
are still static. Devices which allow constant perfusion 
of the cell culture vessel therefore provide much better 
options for modeling the dynamic changes induced by 
maternal cues and to elucidate their effects on the 
embryonic environment and the embryo itself. Perfusion 
approaches were already used to model FRT epithelia, 
and were proven to enhance structural differentiation 
(Reischl et al., 1999). Lately, new dynamic culture 
systems, which enable long-term maintenance of 
differentiated and hormone responsive epithelia, have 
been established. An organ-on-a-chip model of the 
bovine oviduct (suitable for live cell imaging) 
recapitulates the oviduct epithelium over extended 
culture periods (up to six weeks). In co-culture 
experiments, epithelial interactions with sperm and 
oocytes as well as fertilization events were observed 
(Ferraz et al., 2017). Beyond that, organ modules of the 
murine ovary, fallopian tube, uterus, cervix and liver, 
with a sustained circulating flow between all tissues, 
were recently coupled in a multiple unit microfluidic 
platform. This system simulated not only the female 
reproductive tract, but also the endocrine loops between 
different organs (Xiao et al., 2017). In the era of 3D 
(bio-)printing, these approaches surely represent the 
next generation of in vitro models for studying early 
embryo-maternal interactions. 
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Figure 2. Schematic illustration of strategies for co-culturing stromal cells with FRT epithelial cells in 
compartmentalized culture systems. (A, B) Stromal and epithelial cells grown in separate compartments. (A) 
Stromal cells seeded in the basal culture dish. No direct epithelial-stromal cell contact; (B) Stromal cells seeded on 
the basal side of the insert directly beneath epithelial cells; (C) Stromal and epithelial cells within the same 
compartment. Stromal cells embedded in ECM support, which may permit the formation of glandular structures. 
 

Co-culture of embryos with epithelia of the FRT 
 

FRT epithelial cells cultured under standard 2D 
submerged conditions were widely used as feeder layers 
to improve IVP outcomes and showed a positive effect 
on in vitro embryo quality (Locatelli et al., 2005; 
Cordova et al., 2012, 2014; Schmaltz-Panneau et al., 
2015). In terms of their embryo supporting capacity, 
however, no difference was detected between oviduct 
and uterine epithelial cells and oviduct stromal cells 
(Goff and Smith, 1998). Feeder origin also had no 
influence on bovine embryonic development and 
transcriptome when bovine oviduct epithelial cells were 
compared with a primate kidney cell line as feeder layer 
(Carvalho et al., 2017). In recent years, co-cultures have 
also been applied to examine early embryo-maternal 
dialogue. In several studies bovine embryos were co-
cultured with OEC to mimic the maternal environment 
in vitro. These experiments demonstrated bi-directional 
responses at the transcriptional level from both the 
maternal and embryo side (Schmaltz-Panneau et al., 
2014; Garcia et al., 2017). However, OEC were 
subjected to multiple embryos and/or prolonged co-
incubation, which does not ideally imitate the in vivo 
situation in the monovulatory cow.  

Taking advantage of the ALI approach (see 
paragraph compartmentalized culture systems), co-
culture experiments for the first time demonstrated 
embryo development on OEC up to the blastocyst stage 
without supplementation of any embryo culture medium 
(Chen et al., 2017). However, more in vivo-like mRNA 
expression of bovine embryos could not be proven as a 
result of co-culture (van der Weijden et al., 2017). We 
deduce that to enhance embryo quality in co-culture 
including a dynamic hormonal stimulation procedure 
might be necessary to better mimic the in vivo oviductal 
environment.  
 

Conclusion 
 

Depending on the researcher’s specific 
scientific question, different culture models are 
available to reconstruct the upper FRT in vitro, either 
for the short or long term. In compartmentalized culture 
systems, epithelia are manipulable from their basolateral 
as well as apical surface, allowing co-culture of 
embryos/zygotes on the apical and concomitant 
application of maternal effectors to the basolateral 

compartment. This makes them powerful tools for 
studying early embryo-maternal interactions. Stromal 
cells and ECM components can be incorporated, which 
is of special interest for modeling the endometrium in 
vitro. Considering that the oviduct and uterus are highly 
dynamic, hormone responsive organs, perfused culture 
systems or microfluidic devices allow a more in vivo-
like recapitulation of the early embryonic environment. 
The recent advances achieved in these model systems 
provide the basis for deciphering the possibly fine-tuned 
interactions between the single early embryo and the 
maternal organism as well as their effects on offspring 
development and health.   
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