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Abstract 
 
Much work has been conducted over the years 

to determine the major factors that control follicle 
growth, including the role of FSH, LH and IGF1. These 
factors permit the dominant follicle to grow while 
subordinate follicles regress. The dominant follicle 
enters a phase of growth, and then that growth slows as 
the follicle reaches maximum size. The dominant 
follicle remains morphologically larger for a few days in 
the static phase, before starting to regress with the loss of 
functional dominance. Few studies have addressed the 
factors that determine follicle fate during the static phase. 
In this review, we summarize the differences in gene 
expression between growing and non-growing (static or 
early regressing) dominant follicles, highlighting areas 
that require further study. Potential factors that may help 
survival of the dominant follicle include IGF1, estradiol 
and BMP4/BMP7, and intrafollicular factors that likely 
initiate regression and apoptosis include FGF18 and 
AMH acting through FASLG. It is also very likely that 
the influence of microRNAs, especially miR-21, play a 
role in determining the fate of the dominant follicle.  
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Introduction 
 

The bovine dominant follicle, once established, 
continues to grow from about 9 to 15 mm diameter over 
the course of about 4 days, then enters a 4 to 5-day 
plateau or static phase with little further growth, after 
which it starts to regress concomitantly with the 
recruitment of a new follicle wave. The dynamics of 
dominant follicle growth and gonadotropin control of 
the establishment of follicular dominance in ruminants 
have been extensively reviewed (Ireland et al., 2000; 
Ginther, 2016; Shimizu, 2016; Webb et al., 2016). The 
growing dominant follicle is highly estrogenic and the 
granulosa cells proliferate as the follicle increases in 
diameter, initially under the influence of FSH. As plasma 
FSH concentrations decline, the continued growth of the 
follicle is supported by LH and IGF1 (Shimizu, 2016). As 
the follicle reaches the end of the growth phase, 
intrafollicular concentrations of estradiol decrease 
(Ireland and Roche, 1983; Badinga et al., 1992; Price et 
al., 1995) and the follicle enters the static phase.  

It is well known that the dominant follicle is 
functionally as well as morphologically dominant, as it 
suppresses the development of smaller follicles; ablation 
of the dominant follicle allows immediate recruitment 
of a new follicle wave or can rescue the regressing 
subordinate follicle if performed early during the 
growth of the dominant follicle (Ko et al., 1991; 

Siddiqui et al., 2015). The static phase, despite its name, 
is a period of change for the dominant follicle and the 
fate of the follicle is decided during this time. Early 
static dominant follicles are estrogen-active and 
approximately half of static dominant follicles are 
morphologically healthy by light microscopy (Price et 
al., 1995; Irving-Rodgers et al., 2001), and they 
frequently respond to induced luteolysis by ovulating 
(Ali et al., 2001). In contrast, the late static dominant 
follicle is estrogen-inactive, mostly atretic and fails to 
ovulate after luteolysis (Ali et al., 2001; Irving-Rodgers 
et al., 2001). Therefore, the static phase is a plastic 
period of the dominant follicle lifespan during which the 
fate of the follicle is determined.  

To determine the mechanisms of follicle 
growth and regression, many studies have been 
performed comparing growing dominant with 
regressing subordinate follicles of the same wave. 
Although these studies are of great value and have 
identified many characteristics of growth and regression, 
they do not address the 'static' phase of the dominant 
follicle lifespan. The purpose of this review is to 
summarize our understanding of the physiology of late 
growing, static and early regressing dominant follicles in 
cattle (Bos taurus), with reference to other species where 
appropriate, and to explore potential intrafollicular 
mechanisms that may determine follicle fate during the 
static phase. Several factors involved in early dominant 
follicle growth are described out of necessity when data 
for the late growing/static phase are unavailable. 
 

Gene expression patterns in late growing, static & 
early regressing dominant follicles 

 
Numerous studies of the expression of 

candidate genes and of global transcriptomics have been 
performed comparing granulosa cells from dominant 
follicles and from subordinate follicles during and after 
selection in cattle (reviewed in Zielak-Steciwko and 
Evans, 2016), but less attention has been paid to the 
different phases of dominant follicle growth. An early 
series of studies measured steroidogenic enzyme and 
gonadotropin receptor mRNA levels by in-situ 
hybridization (reviewed in Bao and Garverick, 1998), 
and as follicle growth slowed in healthy dominant 
follicles (from day 4 to 6 after wave emergence), there 
were decreases in CYP11A1 mRNA levels in theca and 
granulosa cells, and of CYP17A1 and LHCGR in theca 
cells. These same studies demonstrated that atretic 
dominant follicles contained less CYP19A1 and LHCGR 
mRNA in the granulosa cell layer compared to healthy 
dominant follicles of the same size. In a later study, a 
comparison between dominant follicles in the early and 
late growing phases, from day 2 to day 5.5 after wave

DOI: 10.21451/1984-3143-AR2018-0030 

Copyright © The Author(s). Published by CBRA. 
This is an Open Access article under the Creative 
Commons Attribution License (CC BY 4.0 license) 

https://creativecommons.org/licenses/by/4.0/�


 Price and Estienne. Dominant follicle growth and atresia. 
 

Anim. Reprod., v.15, (Suppl.1), p.680-690. 2018 681 

emergence, demonstrated that as the dominant follicle 
reaches maximum diameter, granulosa FSHR mRNA 
levels decrease and LHCGR mRNA levels increase 
(Mihm et al., 2006), however this study included a 
number of smaller follicles that were no larger than the 
next subordinate follicle.  

Other candidate gene studies have revealed that 
some fibroblast growth factors have been shown to 
differ between healthy and atretic dominant follicles; 
FGF18 is expressed in theca cells and mRNA levels are 
higher in atretic compared with healthy large follicles 
and in subordinate vs dominant follicles (Portela et al., 
2010). FGF9 is predominantly expressed in granulosa 
cells and mRNA levels are higher in atretic compared 
with healthy large follicles (Schütz et al., 2016). In 
contrast, thecal FGF2 and FGF10 mRNA levels have 
been reported to be higher in healthy compared to 
atretic bovine follicles of abattoir origin (Berisha et al., 
2004; Buratini et al., 2007).  

Some members of the bone morphogenetic 
protein family also change with follicle health: Glister et 
al. demonstrated that granulosa cell BMP2 mRNA levels 
decreased as follicle size increased (from 7 to 18 mm, 
abattoir ovaries; Glister et al., 2010) whereas Selvaraju at 
al. showed that BMP2 mRNA levels increase as 
dominant follicles progressed from pre- to mid-
dominance (8 - 16 mm; timed collection) and remained 
high in static phase follicles (Selvaraju et al., 2013). 
Comparing estrogen-active and inactive large follicles, 
granulosa cell BMP2 mRNA levels were higher in large 
atretic follicles compared to large healthy follicles 
(Glister et al., 2010). This latter study also showed that 
BMP4, BMP6 and BMP7 mRNA levels did not differ 
between healthy and unhealthy large follicles.  

Cocaine- and amphetamine-regulated transcript 
(CARTPT) mRNA levels are very low in granulosa 
cells of dominant follicles in cattle compared with pre-
selection follicles and do not change during dominant 
follicle growth (Lv et al., 2009). Unfortunately, data are 
not available for these genes in growing, static and early 
regressing dominant follicles. 

Two studies have investigated the follicular 
transcriptome during the late growing/static phase of the 
dominant follicle lifespan. In one study, the static phase 
was mimicked in cows by stimulating with FSH followed 
by a 'coasting' period; in this model, the abundance of 
multiple mRNA species changed as the follicle coasts, 
with most changes reflecting an increase in genes 
encoding anti-proliferative and pro-apoptotic proteins as 
the static phase progresses (Nivet et al., 2013). In a study 
of follicles >9 mm diameter grouped as growing, static 
and regressing by flow cytometry, microarray analysis 

identified a number of genes that were differentially 
expressed between the three groups, suggesting that the 
follicles undergo distinct changes rather than a gradual 
slide from healthy to atretic (Girard et al., 2015). In this 
latter study, BMP4 mRNA levels were not different 
between growing, static and regressing dominant 
follicles, in agreement with Glister et al. (2010).  

MicroRNAs have also been the target of 
profiling during follicle growth. Using large bovine 
follicles of abattoir origin, 57 miRNA were differently 
expressed in estrogen-active compared to estrogen-
inactive follicles (Sontakke et al., 2014). In a study 
comparing the dominant and subordinate follicles on day 
3 and day 7 of the cycle, Salilew-Wondim and colleagues 
found few (16) differentially expressed miRNA between 
dominant and subordinate follicles on day 3, and a larger 
number (108) differentially expressed on day 7 (Salilew-
Wondim et al., 2014). A direct comparison of dominant 
follicles on day 3 (growing) and day 7 (static or 
regressing) identified 131 differentially expressed 
miRNA in granulosa cells (Salilew-Wondim et al., 2014). 
The number of miRNA that were differentially expressed 
in both these datasets is small (Table 1), which might be 
a reflection of the different biological models used. 

A study comparing preovulatory dominant 
follicles with subordinate follicles identified 34 
miRNA enriched and 30 miRNA reduced in granulosa 
cells of preovulatory follicles compared to subordinate 
follicles; interestingly, PCR analysis indicated that 
selected miRNA differentially expressed in granulosa 
cells were also differentially expressed in theca cells 
(Gebremedhn et al., 2015). Preovulatory follicles would 
be expected to be different from non-ovulatory dominant 
follicles owing to the considerable increase in oestradiol 
levels and LH pulse frequency as well as a decrease in 
peripheral progesterone levels, so this particular 
comparison is not so relevant for the current discussion. 

No global profiling has yet been reported for 
theca cells during this stage of follicle growth. A 
microarray study compared the theca cells of healthy 
and atretic follicles 3-5 mm diameter of abattoir origin, 
and concluded that most differentially expressed genes 
were related to inflammation and vascularization rather 
than apoptosis (Hatzirodos et al., 2014). 

A glycoproteomic study was conducted with 
bovine granulosa and theca samples and atresia was 
associated with increased levels of certain sulphated 
chondroitin polysaccharides in granulosa cells and of 
sulphated heparan polysaccharides in theca cells 
(Hatzirodos et al., 2012). It is not known whether such 
changes occur during the growing-static-regressing 
phases of the dominant follicle. 

 
Table 1. MicroRNA identified in both Sontakke et al. (2014) and Salilew-Wondim et al. (2014) as differentially 
expressed between growing and non-growing large follicles. 

Upregulated in growing follicles Upregulated in non-growing follicles 
bta-miR-202 bta-miR-149-3p 
bta-miR-31 bta-miR-21 
bta-miR-873 bta-miR-150 
bta-miR-652 bta-miR-204-3p 
bta-miR-450b bta-miR-409a 
bta-miR-15b bta-miR-142 
bta-miR-424-p5  
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Prolonging the life of the dominant follicle 
 
FSH, IGF1 and estradiol 
 

FSH is a major folliculogenic factor and 
administration of exogenous FSH induces the growth of 
multiple dominant follicles in a superovulatory setting; 
lower levels of FSH are also able to maintain the growth 
of 2 dominant follicles and/or delay regression of 
subordinate follicles (Adams et al., 1993; Mihm et al., 
1997; Rivera and Fortune, 2001). This is likely to be 
caused by stimulation of the early growth phase of the 
dominant follicle which permits the selection of 
multiple dominant follicles. Once the dominant follicle 
is established it can remain viable in the face of low 
circulating FSH concentrations, and continue to grow 
past its normal lifespan if pulsatile LH secretion is 
increased (Stock and Fortune, 1993; Bigelow and 
Fortune, 1998). A regressing dominant follicle (as well 
as subordinate follicles) can also be rescued if FSH 
levels are increased (Ginther et al., 2016). 

Intrafollicular estradiol is another major player 
involved in follicle health. It is well known that 
estradiol increases proliferation of granulosa cells of 
numerous species (Drummond and Findlay, 1999; 
Rosenfeld et al., 2001), enhances cell cycle progression 
from G1 to S phase (Quirk et al., 2006), and protects 
cells against FASLG- and FGF18-induced apoptosis 
(Quirk et al., 2006; Portela et al., 2015). It should be 
noted here that exogenously administered systemic 
estradiol induces atresia of the dominant follicle (Burke 
et al., 2005) by reducing LH pulse amplitude as well as 
FSH secretion (Price and Webb, 1988). 

Although IGF1 is probably best known for its 
role in follicle deviation and the establishment of 
dominance, it also likely plays a role in supporting 
dominant follicle survival through regulation of IGF 
binding proteins (IGFBP) and hence IGF1 bioactivity 
(Mazerbourg and Monget, 2018). Large estrogen-active 
sheep and cattle follicles contain lower levels of 
IGFBPs - and thus higher IGF bioavailability - than do 
smaller growing or atretic follicles (Besnard et al., 
1996; Roberts and Echternkamp, 2003), and addition of 
IGF1 to granulosa cells increased cell proliferation and 
estradiol secretion in a follicle-size specific manner 
(Monniaux and Pisselet, 1992; Gong et al., 1993; Spicer 
et al., 1993).  
 
The transforming growth factor-β (TGFβ) family 
 

The TGFβ superfamily roles in ovarian 
function are critical and complex, and it seems that the 
disappearance of one of them or a disturbance of the 
equilibrium formed by these factors will strongly 
influence folliculogenesis and then ovulation. The role 
of TGFβ superfamily members in preantral follicle 
development and follicle selection has been reviewed 
(Knight and Glister, 2006).  

Two BMPs, BMP4 and BMP7, are generally 
considered to be theca-derived proteins that act on 
granulosa cells. In cattle, both BMP4 and BMP7 mRNA 
are detected predominantly in theca cells (Fatehi et al., 

2005; Glister et al., 2010), whereas in sheep neither 
BMP4 nor BMP7 mRNA were detected in follicles by 
in-situ hybridization (Juengel et al., 2006). Neither 
BMP4 nor BMP7 mRNA levels appear to be regulated 
by LH in bovine theca cells (Glister et al., 2011). 

In vitro studies have shown that these BMPs 
affect granulosa cell steroidogenesis and proliferation. 
Theca-derived BMP4 and BMP7 increased granulosa 
proliferation and estrogen secretion, and inhibited 
progesterone synthesis in some studies with ruminants 
(Glister et al., 2004), but did not alter granulosa 
proliferation in another study (Yamashita et al., 2011). 
The effect of BMP7 on progesterone synthesis is due to 
a reduction of STAR mRNA levels (Yamashita et al., 
2011). These BMPs may also promote follicle 
development/survival by increasing granulosa cell 
VEGF secretion and angiogenesis (Shimizu et al., 
2012). Paradoxically, BMP4 and BMP7 potently inhibit 
androgen secretion from bovine theca cells (Glister et 
al., 2005) and as levels of neither appear to change with 
follicle health (Glister et al., 2010), the physiological 
role of these proteins remains to be established. 

Levels of granulosa cell BMP2 mRNA were 
lower in estrogen active dominant follicles compared 
with smaller growing follicles, and tended to increase in 
atretic follicles in cattle (Glister et al., 2010), and in 
sheep BMP2 mRNA was only detected by in-situ 
hybridization in atretic follicles (Juengel et al., 2006). In 
contrast, BMP2 mRNA levels were higher in large 
estrogen active dominant follicles compared with 
smaller growing follicles in water buffalo (Rajesh et al., 
2018). Addition of recombinant BMP2 increased 
estradiol secretion but decreased progesterone secretion 
from ovine and bovine granulosa cells in vitro without 
altering cell proliferation (Souza et al., 2002; Juengel et 
al., 2006; Selvaraju et al., 2013).   

Two other BMPs of interest are BMP15 and 
GDF9, which are expressed in the oocyte. GDF9 is 
critical for primary follicle growth and knock-out of 
Gdf9 in the mouse results in arrest of folliculogenesis at 
the primary stage (Dong et al., 1996). In sheep, the role 
of GDF9 appears similar because in the case of a natural 
loss of function mutation of GDF9 in several breeds of 
ewes show abnormal folliculogenesis with arrest of 
follicle development at the primary stage (Nicol et al., 
2009). Loss of Bmp15 in mice results in reduced litter 
size owing to ovulation defects (Yan et al., 2001). In 
sheep there are several natural mutations that alter antral 
follicle growth, including FecXI, FecXR and FecXL, for 
which homozygous ewes are sterile with follicle arrest 
at the primary stage whereas ewes heterozygous for this 
same mutation have increased ovulation rate (Galloway 
et al., 2000; Bodin et al., 2007; Martinez-Royo et al., 
2008). Another mutation in the BMP subfamily, called 
FecB, is in the coding sequence of the BMPR1B gene 
and induces a partial loss of function of this BMP 
receptor which leads to increased ovulation rate (Souza 
et al., 2001) and influences the proliferation and 
steroidogenesis of granulosa cells (Mulsant et al., 2001; 
Campbell et al., 2006). Recently, a mutation in a BMP 
signalling pathway termed 'Trio' has and been described 
in cattle, which results in increased SMAD6 mRNA
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levels and, similar to the situation in sheep, in the 
growth and survival of two or more dominant follicles 
(Garcia-Guerra et al., 2018).  

Both BMP15 and GDF9 affect granulosa cell 
proliferation and steroidogenesis, but in complex 
species-specific patterns. Recombinant BMP15 
stimulated granulosa cell proliferation in ruminants 
(McNatty et al., 2005) and protects granulosa and 
cumulus cells against apoptosis in ruminants (Hussein et 
al., 2005). In sheep and cattle, BMP15 and GDF9 have 
been reported to inhibit FSH-induced progesterone 
synthesis by granulosa cells (McNatty et al., 2005; 
Fabre et al., 2006), although species of origin of the 
protein has been reported to alter its effect: ovine GDF9 
inhibited progesterone secretion from sheep granulosa 
cells whereas mouse GDF9 increased progesterone 
secretion (McNatty et al., 2005). There is also a species 
difference in the amounts of BMP15/GDF9 secreted by 
the oocyte of polyovular vs monovular species, as sheep 
secrete both whereas rats secrete primarily GDF9 (Lin 
et al., 2012). BMP15 and GDF9 synergize, and this may 
be in the form of secreted heterodimers (cumulin) or 
secreted monomeric proteins that form dimers at the 
receptor of the target cell (Mottershead et al., 2015; 
Heath et al., 2017). 

There is also evidence that GDF9 can alter 
theca cell function in pre-selection follicles, as it 
decreased proliferation and steroidogenesis of bovine 
theca cells from follicles <6 mm diamater, but had no 
effect on theca cells from follicles >8 mm diameter 
(Spicer et al., 2008). 
 

Induction of atresia in the dominant follicle 
 

The fate of the dominant follicle is determined 
during the static phase of development, and the follicle 
can regress and become atretic 'passively' if the survival 
signals described above are reduced/absent. However, it 
is not clear what endocrine changes occur between the 
end of the growing period and the end of the static 
period. Alternatively, intrafollicular events may 
predispose a follicle toward atresia; the following 
section describes some potential pro-apoptotic factors 
that may play a role in determining the fate of the 
dominant follicle. 
 
Fas antigen and Fas ligand 
 

Fas antigen is a transmembrane receptor which 
induces apoptosis when activated by the protein Fas 
ligand (FASLG). In cattle, granulosa cell FAS mRNA 
levels were not different between growing and atretic 
dominant follicles, but were significantly higher in the 
theca layer of atretic compared with healthy dominant 
follicles (Porter et al., 2000). FASLG mRNA levels are 
also higher in atretic vs healthy follicles in non-
ruminants, and can be increased in ruminant granulosa 
and theca cells in vitro by treatments that increase 
apoptosis including serum withdrawal (Hu et al., 2001), 
FGF18 (Portela et al., 2015) and toxins (Guerrero-Netro 
et al., 2015, 2017). Alone, FASLG does not cause 
apoptosis in granulosa cell cultures with serum but 

requires the presence of IFN gamma - however, in serum-
free culture, bovine GC are susceptible to FASL-induced 
apoptosis (Quirk et al., 2000), although this was 
prevented in the presence of IGF, FGF2 and EGF, but not 
FGF7, TGF, PDGF or gonadotropins (Quirk et al., 2000). 

In rodents, Faslg induces granulosa cell death 
and decreased levels of inducible nitric oxide synthase 
(Nos2) mRNA levels, and this can be prevented by 
nitric oxide (Chen et al., 2005). In cattle, inhibition of 
endogenous NO production increased FASLG 
expression and granulosa cell apoptosis (Zamberlam et 
al., 2011). Estradiol stimulated NOS2 mRNA levels in 
bovine granulosa cells (Zamberlam et al., 2011) and 
also attenuates FASLG-induced apoptosis (Quirk et al., 
2006). It seems likely that FASLG is a mediator of 
apoptosis induced by various effectors. 
 
Fibroblast growth factors 
 

FGF18 has been clearly demonstrated as a pro-
apoptotic factor. This member of the fibroblast growth 
factor family is produced in vivo by the theca layer in 
cattle, and protein and mRNA levels are higher in atretic 
compared with healthy follicles. Moreover, recombinant 
FGF18 inhibits granulosa cell estradiol secretion and 
abundance of CYP19A1, CYP11A1, HSD17β1, STAR, 
HSD3β1 and FSHR mRNA (Portela et al., 2010), and 
increases DNA fragmentation and abundance of cleaved 
caspase-3 in granulosa cells (Portela et al., 2010, 2015; 
Fig. 1). Injecting FGF18 into the growing dominant 
follicle in vivo caused follicle regression (Portela et al., 
2015). It is interesting to note here that some growth 
factors promote granulosa cell proliferation but decrease 
estradiol secretion in vitro, FGF9 for example 
(Schreiber and Spicer, 2012); this apparent paradox has 
been referred to a dedifferentiating effect, but 
proliferation of cells may be caused by growth factor 
activation of MAPK pathways that drive proliferation 
irrespective of lower estradiol levels.  

In support of this notion, FGF18 appears not to 
activate the typical FGF signalling pathways in 
granulosa cells; specifically, FGF18 does not increase 
MAPK3/1 phosphorylation or abundance of typical FGF 
response genes including SPRY2 and EGR3 (Jiang et 
al., 2013; Han et al., 2017), although it does increase 
MAPK14 phosphorylation (Portela et al., 2015). The 
mechanism of action of FGF18 remains obscure. 
 
The transforming growth factor-β (TGFβ) family 
 

Anti-Müllerian Hormone (AMH), another 
member of the TGFβ super-family, is secreted by 
granulosa cells of small follicles and is known to inhibit 
the recruitment of primordial follicles in rodents 
(Durlinger et al., 1999) but not in sheep (Campbell et 
al., 2012). In ruminants, as in non-ruminant species, 
AMH levels decrease with increasing size of antral 
follicles, and appears to be inversely correlated with 
CYP19A1 expression (Monniaux et al., 2008; Campbell 
et al., 2012; Liang et al., 2016). Recombinant AMH 
decreases granulosa and theca cell steroidogenesis in 
vitro (Campbell et al., 2012), and has been shown to



 Price and Estienne. Dominant follicle growth and atresia. 
 

684 Anim. Reprod., v.15, (Suppl.1), p.680-690. 2018 

increase apoptosis in human granulosa tumour cells 
(Anttonen et al., 2011). AMH mRNA levels and protein 
secretion from granulosa cells in vitro are stimulated by 
BMP2, BMP4 and BMP6 in sheep and cattle (Rico et 
al., 2011; Estienne et al., 2015), and AMH mRNA levels 
are increased by BMP15 in sheep granulosa cells, and 
GDF9 enhanced this effect (Pierre et al., 2016). At least 
part of the ability of the FecB mutation to decrease 
granulosa apoptosis may be the reduced expression of 
AMH mRNA and protein in this genotype (Fig. 2). 

It is worthy of mention that certain BMP family 
members appear to have both pro-survival and pro-
apoptotic actions, as they have been shown to stimulate 
estradiol secretion, which is a pro-survival factor, or 
stimulate AMH secretion which promotes apoptosis (Fig. 
3). It is most likely that the predominant activity depends 
on stage of follicle growth and endocrine/paracrine 
milieu of the follicle at the time in question. Studies in 
which multiple endocrine/paracrine factors are studied in 
combination are needed to resolve this enigma.  

 
Figure 1. FGF18 increases apoptosis in granulosa cells and does not activate typical FGF signaling pathways. 
Culture of bovine granulosa cells with recombinant human FGF18 increases cleaved caspase-3 protein levels (A) 
and DNA fragmentation (B), and addition of FGF18 (10 ng/ml, filled bars) does not increase levels of mRNA of 
typical response genes (compare with FGF8; 10 ng/ml, hollow bars). Bars with common letters are not statistically 
different. Data from (Portela et al., 2010, 2015; Jiang et al., 2013; Han et al., 2017). 
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Figure 2. Regulation of AMH by BMPs in sheep follicles. Anti-Mullerian hormone protein (A,B) and mRNA (C) 
levels are markedly reduced in sheep carrying the hyperprolificacy Booroola mutation in BMPR1 compared to non-
carriers, and this mutation leads to reduced granulosa cell responsiveness to BMP4 (D). Bars with common letters 
are not statistically different, and asterisks denote a significant stimulation of AMH mRNA abundance by BMP4. 
Data from Estienne et al. (2015). 
 
 

 
 

 

 

Figure 3. The duality of BMP action in the 
ovarian follicle. BMPs of theca, oocyte and 
granulosa cell origin have been shown to 
stimulate FSHR expression and estradiol 
secretion from granulosa cells, thus supporting 
granulosa cell survival and growth or 
maintenance of the dominant follicle. 
However, these same factors have also been 
shown to increase AMHR2 expression and 
AMH secretion, which is a pro-apoptotic 
signal. The net impact on the follicle is likely 
determined by other endocrine/paracrine 
factors present during the static phase of the 
dominant follicle lifespan. 
 
 
 
 

 
 
 
miRNA 
 

The roles of miRNA in dominant follicle 
development remain obscure. Some miRNA upregulated 
in atretic follicles (Table 1) have been shown to block 
apoptosis, including miR-21 in mouse granulosa cells 
(Carletti et al., 2010), miR-149 in lymphoma cells

(Fan et al.,2016) and miR-142 in cancer cells (Li et al., 
2016). However, miR-150 promotes cell growth in 
ovarian cancer (Li et al., 2015) but causes apoptosis in 
lymphocytes (Sang et al., 2016) as well as endothelial 
cells. It is possible that these miRNAs are upregulated 
in atretic follicles as a defence against apoptosis, and are 
thus an effect of atresia rather than a cause. 
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Conclusions 
 

As growth of the dominant follicle slows, the 
follicle faces two possible fates: maintenance of 
growth/survival, and atresia. Increases in gonadotropin 
concentrations will drive survival, likely through 
increased intrafollicular estradiol, IGF1 and mRNA 
levels, and evidence is accumulating that other 
intrafollicular factors may either predispose the follicle 
to or provide protection against atresia. The pro-
apoptotic factors likely include increased secretion of 

AMH by granulosa cells and of FGF18 by theca cells, 
which increase FASLG-mediated apoptosis of granulosa 
cells and thus initiate an irreversible process of follicle 
atresia. The BMPs have been implicated, and they may 
help or hinder follicle survival depending perhaps on 
other endocrine or paracrine factors present. The 
potential role of each is summarized in Fig 4.  Exactly 
when and how this fate determination occurs is 
unknown, and future research is required to determine 
the paracrine and autocrine events that occur within the 
follicle during the static phase of its lifespan. 

 

 
Figure 4. Schematic representation of the fate of the dominant follicle as it enters the static phase of its lifespan. The 
follicle may survive and go on to the preovulatory stage if appropriate gonadotrophic stimuli are provided. 
Alternatively, lack of gonadotropin support in combination with the secretion of local proapoptotic factors including 
but not limited to FGF18 and AMH may initiate FASLG-mediated granulosa cell apoptosis and irrevocably drive 
the follicle into regression. 
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