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Abstract 
 

Our expanding knowledge of ovarian function 
during the buffalo estrous cycle has given new 
approaches for the precise synchronization of 
follicular development and ovulation to apply 
consistently assisted reproductive technologies (ART). 
Recent synchronization protocols are designed to 
control both luteal and follicular function and permit 
fixed-time AI with high pregnancy rates during the 
breeding (autumn-winter) and nonbreeding (spring-
summer) seasons. Additionally, allow the initiation of 
superstimulatory treatments at a self-appointed time 
and provide opportunities to do fixed-time AI in 
donors and fixed-time embryo transfer in recipients. 
However, due the scarce results of in vivo embryo 
recovery in superovulated buffaloes, the association of 
ovum pick-up (OPU) with in vitro embryo production 
(IVEP) represents an alternative method of exploiting 
the genetics of high yeld buffaloes. Nevertheless, 
several factors appear to be critical to OPU/IVEP 
efficiency, including antral follicle population, 
follicular diameter, environment, farm and category of 
donor. This review discusses a number of key points 
related to the manipulation of ovarian follicular growth 
to improve assisted reproductive technologies in 
buffalo. 
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Introduction 
 

The combined use of assisted reproductive 
technologies (ART), such as, timed-artificial 
insemination (TAI), superstimulation (SOV), ovum 
pick-up (OPU), in vitro embryo production (IVEP) and 
timed-embryo transfer (TET) has a great potential to 
improve reproductive outcomes and disseminate 
selected genetics, improving milk and beef production 
in buffalo herds. 

However, the success of ART is closely related 
to the control of ovarian follicular development and 
ovulation. Buffalo is a seasonal reproductive species 
and becomes sexually active in response to a decreasing 

day length (short-days) in late summer to early autumn 
(Zicarelli, 1997). During the nonbreeding season, 
buffalo often exhibit anestrus, which extends the 
anovulatory period and consequently, reduces 
reproductive performance (Zicarelli, 2007).  

In recent decades, several therapies have been 
proposed for manipulating ovarian follicle growth and 
ovulation in buffalo, regardless of reproductive 
seasonality (Baruselli et al., 2007; Campanile et al., 
2010; Carvalho et al., 2016). These hormonal 
manipulations have been successfully used to optimize 
the reproductive outcomes following the application of 
various biotechnologies. 

This review aims to elucidate some factors that 
affect the efficiency of assisted reproductive 
technologies (ART) in buffalo. 
 

Ovarian physiology in buffalo 
 

The understanding of follicular dynamics in 
buffalo is necessary for developing new techniques and 
improving the currently used regimens for the 
manipulation of the estrous cycle. Ovarian follicular 
dynamics in buffalo are similar to those in cattle. The 2-
wave cycle is the most common in buffalo (63.3%; Fig. 
1; Baruselli et al., 1997) and the follicle deviation 
occurs 2.6 days after ovulation, when the diameters of 
the dominant and subordinate follicle are 7.2 and 6.4 
mm, respectively (Gimenes et al., 2011). As in cattle, 
the number of waves in a cycle is also associated with 
the luteal phase and with the estrous cycle length.  

However, the number of follicles recruited per 
follicular wave is lower in buffalo than in cattle 
(Baruselli et al., 1997; Gimenes et al., 2009; Campanile 
et al., 2010). The number of primordial cells in buffalo 
ovaries varies from 10,000 to 12,000 (Danell, 1987), 
which is about 10-fold lower than in cattle (Manik et 
al., 2002). Furthermore, it was verified that 92 to 
95% of follicles are estrogen inactive/atretic at 
random stages of the reproductive cycle. Van Ty et al. 
(1989) also observed the existence of a lesser number 
of antral follicles in buffalo, when compared to cattle. 
These authors found that buffalo ovaries have about 
20% of the number of antral follicles found in cattle 
(47.5 ± 23.8 vs. 233.0 ± 95.8; P < 0.002). 
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Figure 1. Standardized diameters of ovarian follicles (dominant follicle, largest and second largest subordinate 
follicle) in buffalo cows with a) two wave (n = 19) and b) three wave (n = 10) estrous cycles. Adapted from 
Baruselli et al. (1997). 
 

Pharmacological control of follicular development 
and ovulation 

 
Prostaglandin F2α (PGF) 
 

Estrus synchronization with prostaglandin F2α 
(PGF2α) is an effective and economical tool for 
induction of luteal regression, improving the estrous 
detection efficiency and the use of ART in buffaloes. 
Studies have shown that PGF2α treatment caused 100% 
luteolysis in buffalo (plasma progesterone <1 ng/ml 
within 48 h of administration), regardless of the luteal 
phase (early or late luteal phase; 6-9 or 11-14 days after 
estrus, respectively, (Porto Filho et al., 2014). Ovulation 
can occur up to 6 days after PGF2α administration, 
depending on the responsiveness of the corpus luteum 
(CL) and the stage of ovarian follicle development at 
the time of PGF2α treatment (Porto Filho et al., 2014). 
However, the major limitation of PGF2α in buffalo to 
apply efficient ART is the poor estrous behavior, and 
the lack of efficiency in females without a responsive 
CL (e.g., females within 5-6 days of a previous estrus) 
or in pre-pubertal heifers and postpartum anestrous 
cows. These particularities compromise the efficient use 

of only PGF2α treatment in reproductive programs in 
buffaloes. 
 
GnRH 
 

The GnRH administration induces the 
emergence of a new follicular wave after induction of 
ovulation in cattle (Macmillan and Thatcher, 1991; 
Twagiramungu et al., 1992a, b,1995; Wolfenson et al., 
1994; Schmitt et al., 1996). This information became 
the basis for subsequent development of programs to 
control timed ovulation.  

In buffalo, 60.6% (20/33) of the cows ovulated 
after GnRH treatment at random stages of estrous cycle 
(Baruselli et al., 2013). The responses of GnRH depend 
on the diameter of the largest follicle at the moment of 
the treatment (Neglia et al., 2016). Buffalo that ovulated 
after GnRH treatment presented a larger follicle than 
animals that did not ovulate (9.5 ± 1.7 vs. 6.7 ± 2.4 mm; 
P < 0.01). However, no effect of the progesterone (P4) 
concentrations at the time of GnRH treatment and the 
GnRH dose (10 vs. 20 μg of buserelin) on the ovulation 
rate and the time of ovulation were observed. 
Furthermore, the interval between GnRH treatment and
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ovulation was between 28 to 33.0 h (Berber et al., 2002; 
Baruselli et al., 2003b; Campanile et al., 2008; Jacomini 
et al., 2014), similar to the interval observed in cattle 
(Wiltbank and Pursley, 2014). 
 
Estradiol plus progesterone to synchronize wave 
emergence 
 

The combination of progesterone (P4) and 
estradiol (E2) treatment induces follicular atresia by 
suppressing FSH and LH release after the treatment and 
then synchronous emergence of a new follicular wave in 
response to the subsequent FSH release in cattle 
(reviewed by Bó et al., 2003) and buffaloes (reviewed 
in Baruselli et al., 2007) was observed. 

The administration of 1 mg (Bartolomeu, 2003) 
or 1, 2.5 or 5.0 mg of estradiol benzoate (Moura, 2003) 
in progestin-treated buffalo results in emergence of a 
new follicular wave between 3 to 6 days after treatment 
in more than 90% of buffalo cows. However, a delay in 
the onset of follicular wave (8.7 ± 0.27 days) was 
observed when estradiol valerate was administrated 
(Bartolomeu, 2003). Treatment with P4 + E2 can be 
used efficiently to synchronize the emergence of a new 
follicular wave in buffaloes. 
 
Equine chorionic gonadotropin (eCG) 
 

The treatment with equine chorionic 
gonadotropin (eCG) has been demonstrated as an 
alternative to increase final follicular development 
(follicular growth from luteolysis to ovulation) and 
pregnancy per TAI, mostly in anestrous buffalo during 
the non-breeding season (Carvalho et al., 2013). In 
buffalo with insufficient pulsatile release of LH to 
support the final stages of ovarian follicular 

development, treatment with eCG can improve the 
ovulatory response to the synchronization protocol and 
pregnancy outcome. The use of eCG in the 
synchronization protocol increases the diameter of the 
dominant follicle at TAI (13.7 ± 0.4 vs. 12.6 ± 0.6 mm, 
P = 0.09) and the ovulation rate (66.7 vs. 44.8%; P = 0.05). 
Moreover, eCG treatment results in increased CL 
diameter (15.8 ± 0.92 vs. 12.7 ± 0.77 mm, P = 0.03), 
increased P4 concentrations (0.59 ± 0.08 vs. 0.27 ± 0.05 
ng/ml, P = 0.01) at the subsequent diestrus and 
increased pregnancy rate (52.7 vs. 39.4%, P = 0.03; 
Carvalho et al., 2013).  
 
LH, hCG, GnRH and estradiol benzoate to synchronize 
ovulation 
 

After luteolysis, synchronization protocols 
require the use of inducers of ovulation to achieve a 
synchronized ovulation. Timed artificial insemination 
(TAI) protocols generally incorporate gonadotropin 
releasing hormone (GnRH), luteinizing hormone (LH), 
human chorionic gonadotropin (hCG) and estradiol 
esters to synchronize ovulation. The endocrine and 
follicular responses in buffalo to these different 
treatments are presented in Table 1.  

All treatments for ovulation induction have 
satisfactory results in buffalo, with only particularities 
in the endocrine and follicular responses. Plasma P4 
concentration at the subsequent diestrus was lower in 
GnRH (2.94 ± 1.51 ng/ml) than in hCG (4.02 ± 2.34 
ng/ml; P < 0.05) treated buffalo for ovulation induction 
(Carvalho et al., 2007b). Furthermore, there is evidence 
that EB induces a greater release of LH compared with 
GnRH (Berber et al., 2007). and pre-exposure to P4 
before EB administration anticipated the preovulatory-
like LH surge in buffalo cows (Jacomini et al., 2014). 

 
Table 1. Interval between treatment to induce ovulation and peak of LH, time to ovulation and ovulation rate in buffalo. 

Treatment Interval treatment 
to LH surge (h) 

Interval treatment 
to ovulation (h) 

Ovulation 
rate (%) Reference 

LH - 24 93 Berber et al., 2002 
     

hCG - 24 81 Baruselli et al., 2003a; Carvalho 
et al., 2007a, b 

     

GnRH 1-3 26-28 75-85 
Berber et al., 2002, 2007; Baruselli 
et al., 2003b; Carvalho et al., 
2013, 2017; Jacomini et al., 2014  

     

Estradiol Benzoate 23-27 44 78-82 Berber et al., 2007; Jacomini et 
al., 2014; Carvalho et al., 2017 

 
ART for artificial insemination 

 
Artificial insemination (AI) has proven to be a 

reliable technology for buffalo producers to improve 
genetic progress and control venereal diseases in their 
herds. However, the traditional AI program is impaired 
by the low estrous detection efficiency due to the poor 
manifestation of the symptoms of estrus in buffalo and 
to operational difficulties to detect estrus (Baruselli et 
al., 2007). Currently, timed artificial insemination (TAI) 
can be applied routinely in the reproductive programs 

on farms. TAI protocols are designed to control of both 
luteal and follicular function, permitting the TAI 
without estrus detection with satisfactory pregnancy per 
AI (P/AI), during the breeding and non-breeding season. 

Among the hormonal therapies developed for 
cattle, GnRH plus PGF2a-based TAI protocols 
(Ovsynch; Pursley et al., 1995) resulted in follicular 
response with effective synchronization of ovulation in 
cycling buffaloes during the breeding season (Baruselli 
et al., 2003b). However, when the Ovsynch protocol 
was used in anestrous buffaloes (without CL), results
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were inferior to those obtained with cycling buffaloes. 
Souza et al. (2015b) verified that buffaloes without a 
CL at the beginning of the Ovsynch protocol 
responded poorly to the first (42.0 vs. 89.8% 
ovulation rate) and second (52.0 vs. 87.8% ovulation 
rate) GnRH treatments, and this resulted in a lower 
pregnancy rate after TAI (20.0 vs. 65.3%, 
respectively) compared to the animals with a CL. 
Results of several other studies revealed a high 
incidence of anestrus during the nonbreeding season 
(spring and summer), and lower pregnancy rates after 
TAI were reported when the Ovsynch protocol was 
used (7.0-30.0%; Baruselli et al., 1999, 2002, 2003b, 
2007; De Rensis et al., 2005; Ali and Fahmy, 2007; 

Vecchio et al., 2013). Therefore, during the 
nonbreeding season, when a high incidence of anestrus 
is expected, lower pregnancy rates are encoutered in 
buffaloes synchronized with the Ovsynch protocol for 
TAI. On the contrary, studies have demonstrated 
similar pregnancy per TAI in both breeding and 
nonbreeding seasons after the use P4, E2, and eCG-
based protocols (Baruselli et al., 2013; Carvalho et al., 
2013; Monteiro, 2018; Table 2).  

These data demonstrate that it is possible to 
establish an effective AI program in buffaloes 
throughout the year, however it is relevant to understand 
the interactions between ovulation synchronization 
treatments and the season of the year. 

 
Table 2. Pregnancy per AI in lactating buffalo cows subjected to GnRH plus PGF2α (Ovsynch) or P4/E2 and eCG 
based protocol during the breeding and nonbreeding season. 

 Breeding season Nonbreeding season P value 
GnRH plus PGF2 (Ovsynch) 1    

Pregnancy rate per TAI 48.8% (472/967) 6.9% (6/86) 0.001 
P4/E2 and eCG2    

Pregnancy rate per TAI 66.7% (112/168) 62.7% (111/177) 0.31 
1Baruselli et al. (2003b); Monteiro (2018). 
 
 

ART for embryo production 
 

Reproductive technologies, such as 
superstimulation for in vivo embryo production and 
ovum-pick-up (OPU) for in vitro embryo production 
(IVEP) can rapidly enhance genetics in buffaloes 
through both the female and male superior lineage. 
The in vivo-derived (IVD) embryo production has been 
shown to be feasible in buffalo, however low efficiency 
and limited commercial application has been documented 
(Baruselli et al., 2000; Campanile et al., 2010). Currently, 
a series of recent studies have demonstrated the potential 
of in vitro embryo production (IVP) in buffalo. Studies 
on the particularities of these biotechnologies in buffalo 
will be discussed. 
 
Production of in vivo-derived (IVD) embryos 
 

The multiple ovulation followed by TAI for in 
vivo embryo production is a technique that generates 
greater numbers of embryos per donor in cattle 
(Mapletoft et al., 2002). These techniques, which are 
associated with ET to recipients, are powerful tools to 
accelerate the gain in genetic programs (Bó et al., 2002; 
Baruselli et al., 2011). However, buffalo donors generally 
have lower embryo recovery rates than bovines. While 
buffaloes have shown follicular responses after 
superovulation treatment (mean of 15 follicles >8 mm), 
only a moderate ovulation rate (approximately 60%) and 
CL yield at the time of flushing (approximately 9 CL) 
and low embryo recovery rates (34.8%) have been 
obtained (Baruselli et al., 2000). The embryo recovery 
rate in superovulated buffaloes (approximately 20 to 
40%) is lower than in cattle (63 to 80%; Boland et al., 
1991; Adams, 1994; Vos et al., 1994; Shaw et al., 
1995). This divergence in embryo recovery rates was 

hypothesized to be related to a failure of oocyte capture 
and/or of oocyte transport along the oviduct (Baruselli et 
al., 2000). In rabbits, the administration of sequential 
doses of PGF2α during the periovulatory period 
stimulated the contraction of oviduct smooth muscles, 
allowing the activation of the oviduct fimbriae to capture 
the oocytes (Osada et al., 1999). Based on this 
observation, our research group (Soares, 2015) performed 
an experiment that evaluated the use of PGF2α 
(injectable or using a mini osmotic pump; OP) during the 
periovulatory period in superovulated buffaloes. 
However, no differences were found on the total number 
of recovered structures (G-CONT = 2.1 ± 0.8 vs. GPGF-
IM = 2.1 ± 0.6 vs. G-PGF-OP = 1.4 ± 0.4; P = 0.58). 
The low embryo production per donor impairs the use 
of this biotechnology by buffalo producers. 
 
In vitro embryo production (IVEP) 
 

Due the scarce results of in vivo embryo 
recovery in superovulated buffaloes, the association of 
OPU with IVEP represents an alternative method of 
exploiting and multiplying genetic for superior merit 
(Boni et al., 1996; Neglia et al., 2003; Sá Filho et al., 
2009). Historically, OPU-IVEP in buffaloes produced 
lower outcomes (Gasparrini, 2002; Sá Filho et al., 2009; 
Gimenes et al., 2010) than in bovines (Lonergan and 
Fair, 2008; Pontes et al., 2011). However, a series of 
recent studies have demonstrated the commercial 
potential of these techniques in the buffalo specie 
(Baruselli et al., 2013). 

Two main biological problems seem to be 
related to the low efficiency of the OPU-IVEP 
technique in buffaloes: 1) low number of follicles on the 
ovary that results in low oocyte recovery per OPU and; 
2) poor oocyte quality retrieved (only 27.3 to 31.3 % of
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oocytes are classified as viable (Campanile et al., 2003). 
The first limitation can be related to the lower 

number of follicles recruited per follicular wave 
(Baruselli et al., 1997), as observed in studies 
comparing buffaloes with Bos indicus cattle (Ohashi et 
al., 1998; Gimenes et al., 2015). Additionally, a higher 
level of follicular atresia was reported (Danell, 1987; 
Van Ty et al., 1989) and, consequently, a lower 
number of total recoverable and viable oocytes. 
Buffaloes and cattle raised with contemporary 
nutrition and management were compared post mortem 
by Ohashi et al. (1998), and in vivo by Gimenes et al. 
(2015). In both studies, lower number of follicles and 
viable oocytes were observed in buffaloes than in Bos 
indicus cattle. 

The second limitation can be attributed to a 
more fragile zona pellucida (Mondadori et al., 2010) 
and a more fragile bonding between cumulus cells and 
the oocyte (Ohashi et al., 1998; Gasparrini, 2002) in 
buffaloes than in cattle. 

Thus, to improve oocyte quality and recovery, 
studies were conducted by our research group to 
upgrade this biotechnology in buffaloes. Initially, we 
tested the hypothesis that bST could elevate circulating 
IGF-1 levels, promoting recruitment of a greater 
number of follicles and enhancing oocyte quality (Sá 
Filho et al., 2009). Although bST treatment resulted in 
greater numbers of aspirated follicles and retrieved 
oocytes per donor per session, reduced blastocyst 
production rate was observed (Ferraz et al., 2007, 2015; 
Sá Filho et al., 2009).  

The phase of the estrous cycle is an important 
factor that directly influences the quantity and quality of 
oocytes obtained by OPU and, consequently IVP 
efficiency (Vassena et al., 2003). Thus, in another study 
buffalo (Bubalus bubalis), Nelore (Bos indicus) and 
Holstein (Bos taurus) heifers were synchronized to be 
submitted to OPU 1, 3 or 5 days after wave 
emergence. No effects were observed on the OPU-
IVEP efficiency according to the different phases of the 
synchronized ovarian follicular wave in all genetic 
groups. However, the OPU-IVEP procedure was less 
efficient in buffalo and Holstein than in Nelore heifers 
(Gimenes et al., 2015).  

The influence of season (winter; breeding 
season or summer; nonbreeding season) on oocyte 
viability (number of viable oocytes and mitochondrial 
DNA amount) was investigated in nulliparous and 
multiparous buffaloes (Macabelli et al., 2012). During 
summer, the amount of mtDNA was lower in oocytes 
from nulliparous than those from multiparous, but 
during winter mtDNA amount was greater in oocytes 
from nulliparous than those from multiparous. The 
mtDNA analyses do not suggest a negative effect of 
summer on oocyte viability in buffalo. Therefore, in 
tropical climates, the season would not appear to 
adversely affect oocyte quality and fertility. However, 
other studies carried out in buffalo showed an effect of 
season on either the number of follicles/viable oocytes 
or oocyte developmental competence, at different 
latitudes (Manjunatha et al., 2009; Di Francesco et al., 
2011, 2012). 

Number of oocytes retrieved per buffalo and its 
relationship with in vitro embryo production and 
pregnancy 
 

The number of antral follicles in the early 
follicular phase is directly correlated with the ovarian 
reserve (Frattarelli et al., 2000). Indeed, the antral 
follicular population (AFP) directly represents the 
follicle cohort in the ovaries, which is associated with 
the number of oocytes retrieved per OPU for IVEP.  

A large variability of AFP is reported among 
different females, however AFP count is highly 
repeatable within animal (Burns et al., 2005; Ireland et 
al., 2007), and anti-Müllerian hormone (AMH) can be 
considered a reliable endocrine marker of ovarian 
reserve (Ireland et al., 2007, 2008; Monniaux et al., 
2012). In cattle, circulating AMH concentration can 
help veterinarians to predict AFP in ovaries (Ireland et 
al., 2008; Rico et al., 2009; Batista et al., 2014), 
response to SOV treatments (Rico et al., 2009; 
Monniaux et al., 2010a, b; Souza et al., 2015a), and 
more recently as a marker to predict IVEP performance 
of Bos taurus (Guerreiro et al., 2014 Gamarra et al., 
2015; Vernunft et al., 2015) and Bos indicus breeds 
(Guerreiro et al., 2014).  

Aiming to determine the relation between AMH 
and AFP we recently conducted a study in buffalo and 
cattle (Baldrighi et al., 2014; Liang et al., 2016). Despite 
the high variability in AFP among individuals within 
each genetic group, the AFP count was greater in Gir 
(Bos indicus) than in Holstein (Bos taurus) and Murrah 
(Bubalus bubalis) heifers (P = 0.01). Similarly, AMH 
concentration was lower (P < 0.01) for Holstein and 
Murrah heifers than for Gir heifers. In spite of the 
differences between genetic groups, a positive 
relationship among AFP and AMH concentration was 
detected within buffalo. These studies suggest AMH as 
endocrine marker to predict AFP and IVEP performance 
in buffalo.  

Recently we have studied the relationship 
between AFP and in vitro embryo production and 
pregnancy rate in buffalo. The number of oocytes 
recovered per OPU (analyzed by tertile) had no effect on 
viable oocyte and blastocyst rates (Table 3). However, the 
number of blastocysts per OPU was greater when higher 
number of oocytes were recovered per OPU. Pregnancy 
rate following ET in buffalo was lower in donors with 
greater amounts of oocytes retrieved per OPU. 

The results demonstrate that the number of 
oocytes recovered per OPU had a minor effect after ET 
both on blastocyst rate and pregnancy rates. However as 
more oocytes are collected, the number of produced 
blastocysts improves (Fig. 2). These results highlight the 
relevance to identify donors with greater potential to 
oocyte recovery per OPU to assure greater IVEP success, 
especially in buffalo that yield fewer oocytes per OPU than 
bovine. There was great variation in the number of 
oocytes retrieved per OPU (from 0 to 30), with a mean 
of 8.9 ± 5.0 per donor (Fig. 3). Therefore, a holistic 
approach selecting donors with greater genetic value 
(through genomics) and oocyte population (through AMH 
assays or ultrasound for quantify AFP) is highly advisable. 
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Table 3. Effect of retrieved numbers of oocytes per OPU from Murrah buffalo (Bubalus bubalis) donors on IVEP.  

Items TERTILE P value Low Medium High 
Tertile, n 60 59 60 - 
Retrieved oocytes, n 4.1 ± 0.14c 8.2 ± 0.19b 14.5 ± 0.5a <0.0001 
Viable oocytes, n 2.1 ± 0.17c 3.9 ± 0.24b 7.7 ± 0.37a 0.0002 
Viable oocyte rate, % 51.8 47.8 53.2 0.31 
Blastocyst per OPU, n 0.83 ± 0.11c 1.19 ± 0.13b 2.17 ± 0.24a <0.0001 
Blastocyst rate, %1 20.3 14.5 14.9 0.15 
Pregnancy rate, % 44.2 (22/50)a 29.6 (21/70)ab 25.3 (33/130)b 0.05 

1No. blastocysts/no. retrieved oocytes; Adapted from Soares et al. (2018); Centro de Pesquisa em Urologia, Escola 
Paulista de Medicina, São Paulo, SP, Brazil; unpublished data. 
 
 

 
 
Figure 2. Probability of blastocyst rate (□), pregnancy rate (●) and blastocisty per OPU (∆) as a function of numbers 
of retrieved oocytes per OPU in Murrah buffalo (Bubalus bubalis) donors (n = 179). Probability_blastocyst_rate = 
EXP (-0.0375* Oocytes_retrived -1.2673) / [1+ EXP ( -0.0375 * Oocytes_retrived - 1.2673)]; P = 0.07; r2 = 0,02 
Probability_pregnancy_rate = EXP (-0.0287 * Oocytes_retrived -0.5366) / [1+ EXP (-0.0287 * Oocytes_retrived -
0.5366)]; P = 0.41; r2 = 0.0025. Probability_blastocyst per OPU = EXP (+0.0891 * Oocytes_retrived -0.7164) / [1+ 
EXP (+0.0891 * Oocytes_retrived - 0.7164)]; P < 0.001; r2 = 0.35. 
 
 

 
Figure 3. Distribution of oocytes retrieved per OPU in Murrah buffalo donor (n = 179). 
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Factors affecting OPU/IVF efficiency in buffaloes 
 

Numerous factors may interfere with the 
efficiency of OPU/IVEP in buffaloes. Table 4 shows the 
effect of farm, category, postpartum period, reproductive 
status (pregnant or non-pregnant at the OPU) and BCS on 
IVEP production in buffalo donors (Carvalho et al., 
2018; Unidade de Pesquisa e Desenvolvimento de 
Registro, Instituto de Zootecnia, Registro, SP, Brazil; 
unpublished data). The HPMIXED procedure of SAS 
through the best linear unbiased prediction (BLUP) 
analysis was utilized to rank sires, farms, category, 
postpartum period and BCS in terms of oocytes per OPU, 
number of blastocysts and blastocyst rate. Effects of farm 
(P = 0.05), category (P = 0.07) and reproductive status (P 

= 0.02) on the number of retrieved oocytes per OPU 
were found. Nulliparous and primiparous produced 
higher number of retrieved oocytes per OPU than 
multiparous. Furthermore, pregnant buffaloes (30 to 120 
days of gestation) produced lower number of retrieved 
oocytes per OPU than non-pregnant. However, no effects 
were observed in the number of embryo produced per 
OPU and embryo rate (Table 4). 

There is also a strong effect of the bull on the 
efficiency of IVF in buffaloes (Fig. 4). It is clear that 
semen used during in vitro procedures potentially 
influence IVEP and field fertility results (Watanabe et 
al., 2017). Top ranking sires yielded outstanding 
blastocyst rates, while poor sires produced low 
blastocyst rates.  

 
 

Table 4. Effect of different variables in the IVEP production in buffalo donors.  

Variable 
Number of 
retrieved 
oocytes 

P value Embryo produced 
per OPU P value Embryo rate 

(%) P value 

Farm  0.05   0.75   0.54 
A (n = 114) 9.6 ± 0.5a   1.7 ± 0.2   18.5%   
B (n = 269) 8.9 ± 0.3ab   1.7 ± 0.1   20.0%   
C (n = 38) 6.9 ± 0.9b   1.5 ± 0.3   26.4%   
       
Category   0.07   0.48   0.62 
Nuliparous (n = 57) 10.2 ± 0.7   1.7 ± 0.2   17.9%   
Primiparous (n = 39) 11.1 ± 0.9   2.0 ± 0.3   21.2%   
Multiparous (n = 245) 8.34 ± 0.4   1.6 ± 0.1   18.4%   
       
Post partum period   0.92   0.45   0.26 
≤117d (n = 68) 9.5 ± 0.8   2.1 ± 0.2   24.4%   
117d to 217d (n = 68) 9.1 ± 0.6   2.2 ± 0.3   17.7%   
>217d (n = 69) 8.5 ± 0.5   1.6 ± 0.2   26.0%   
       
Reproductive status   0.02   0.80   0.13 
Pregnant (n = 52) 7.9 ± 0.6b   1.7 ± 0.2   23.3%   
Non pregnant (n = 139) 10.0 ± 0.5a   1.8 ± 0.1   17.5%   
       
BCS   0.98   0.88   0.44 
≤3.0 (n = 25) 9.4 ± 1.3   2.0 ± 0.5   20.3%   
3.0 to 4.0 (n = 42) 9.6 ± 0.9   1.3 ± 0.3   16.8%   
>4.0 (n = 47) 9.8 ± 0.8   2.0 ± 0.3   19.1%   

 
Figure 4. Blastocyst rate (%) according to sires used (n = 8) during IVEP from buffalo (Bubalus bubalis) 
donors (n = 379).  
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Superstimulation with FSH prior to ovum pick-up 
 
Superstimulation with FSH previous to OPU 

has been used successfully for IVP programs in cattle, 
resulting in increased total embryo yields per OPU 
session (Goodhand et al., 1999; Sendag et al., 2008; 
Vieira et al., 2014), possibly because of the greater 
follicular diameters of the aspirated follicles. The FSH 
treatment for superstimulation can promote the growth 
of a homogeneous follicle population and to recover 
competent oocytes suitable for IVEP procedures. 

In buffalo, superstimulation with FSH prior to 
OPU increased the proportion of large and medium-

sized follicles available for the OPU procedure (Fig. 5). 
Consequently, the treatment enhanced the proportion of 
oocytes suitable for culture and resulted in greater 
blastocyst rates and embryo yield per OPU-IVEP 
session (Table 5). 

These results provide evidence that 
superstimulation with FSH increased the proportion of 
medium-sized follicles available for the OPU procedure. 
Consequently, the treatment also enhanced the 
proportion of viable oocytes for culture and resulted in 
greater blastocyst rates and embryo yield per OPU-IVP 
session in buffalo. 

 
Table 5. Summary of oocyte and embryo production (mean ± SEM) after OPU-IVEP in control and p-FSH-treated 
buffalo donors (heifers, primiparous and multiparous).  
 Heifers Primiparous Multiparous P value 
Item Control FSH Control FSH Control FSH Treat Cat Treat*Cat 
No. 18 18 15 15 21 21    
Total follicles aspirated, n 20.3 ± 2.4 18.3 ± 1.6 21.3 ± 4.4 17.7 ± 2.9 18.1 ± 2.2 17.6 ± 1.7 0.53 0.73 0.85 
Total oocytes retrieved, n 11.7 ± 1.6 12.3 ± 1.0 11.5 ± 2.0 9.0 ± 1.2 8.7 ± 1.0 9.3 ± 1.2 0.85 0.05 0.46 
Recovery rate, % 68% 73% 66% 55% 53% 53% 0.92 0.71 0.92 
Viable oocyte, n 6.6 ± 1.3 7.8 ± 0.9 5.9 ± 1.5 5.67 ± 1.1 4.3 ± 0.7 5.6 ± 0.9 0.26 0.08 0.72 
Viable rate, % 50% 58% 47% 56% 50% 57% 0.03 0.46 0.95 
Embryo per OPU 1.8 ± 0.5 3.7 ± 0.7 2.4 ± 0.6 2.7 ± 0.8 2.0 ± 0.5 2.6 ± 0.7 0.07 0.25 0.22 
Blastocyst rate, % 17% 34% 27% 28% 24% 32% 0.03 0.89 0.25 
Adapted from Soares et al. (2018); Centro de Pesquisa em Urologia, Escola Paulista de Medicina, São Paulo, SP, 
Brazil; unpublished data. 
 
 

 
Figure 5. Proportion of small (<6 mm), medium (6-10 mm), and large follicles (>10 mm) in buffalo donor submitted 
to OPU with and without FSH superstimulation prior to OPU. 
 
Buffalo calves as oocyte donors 
 

With the advent of genomic technology in 
association with the traditional genetic evaluation, the 
use of calves as oocyte donors is an important strategy 
to accelerate genetic gain by decreasing generation 
intervals (Armstrong et al., 1992; Lohuis, 1995; 
Camargo et al., 2005). Several research groups have 
successfully produced viable embryos from prepubertal 
heifers (Armstrong et al., 1992; Revel et al., 1995; Fry 
et al., 1998; et al., 1998; Taneja et al., 2000; Baruselli 

et al., 2016) in cattle. However, there are some 
concerns that oocytes from young females have a 
lower developmental capacity than those from adult 
donors (Khatir et al., 1996; Presicce et al., 1997; 
Majerus et al., 1999; Palma et al., 2001). In buffalo, 
our group compared the embryo production of calves 
(from 2 to 4 months of age) in relation to prepubertal 
heifers (from 13 to 15 months of age) and lactating 
buffalo cows (Silva et al., 2017). The calves received 
sheep intravaginal P4 device (day 0) and were treated 
with 140 mg of FSH in 4 decreasing doses at 12h
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intervals on day 5 and day 6. Calves were aspirated on 
day 7 by laparoscopy (LOPU - Laparoscopy Ovum 
Pick Up) and prepubertal heifers and adult lactating 
cows by intravaginal follicular aspiration (OPU). Both 
LOPU and OPU were performed on the same day and 
the same sire was used for IVF. Data are shown in the 
Table 6.  

The calves embryos produced (n = 8) were 
transferred to synchronized recipients at the São Paulo 
University Campus and three pregnancies were 
diagnosed (pregnant/transferred = 38%; 3/8) at the 30 
and 60 days of gestation and three healthy calves were 
born, demonstrating the viability of this biotechnology 
for buffalo.  

 
Table 6. Number oocytes retrieved and blastocysts produced (mean ± SEM) after LOPU-IVEP in buffalo donor 
calves and after OPU - IVEP in prepubertal heifers and cows.  

 Category 
 P value 

 Calves Pre-pubertal heifers Lactating cows 

No. 8 10 10  

Total oocytes retrieved, n 10.9 ± 3.3ab 15.5 ± 2.1a 5.8 ± 1.3b 0.007 

Viable oocytes, n 7.6 ± 2.7 6.2 ± 1.6 3.2 ± 0.9 0.11 

Viable oocytes rate, %a 63.9a 39.3b 54.1a 0.01 

Total oocytes cleaved, n 2.7 ± 0,9 3.1 ± 0.7 2.1 ± 0.4 0.52 

Cleavage rate, %b 30.3ab 20.8b 37.6a 0.04 

Viable embryos, n 1.0 ± 0.6b 1.5 ± 0.3a 1.1 ± 0.4ab 0.02 

Embryos rate, %c 5.1b 9.3a 15.4a 0.05 
Adapted from Silva et al. (2017). 
 

Embryo recipient synchronization 
 

The inefficiency in estrus detection, especially 
in buffalo, has limited its widespread application and 
greatly increased the cost of embryo transfer 
commercial operations. The incorporation of techniques 
designed to control follicular wave dynamics and 
ovulation reduces the problem of estrus detection and 
provides possibilities for the application of efficient 
FTET programs in buffalo. At unknown days of the 
estrous cycle (day 0), buffalo recipients were treated 
with intravaginal progesterone device plus 2 mg of EB 
(im). Nine days later (day 9), the P4 device was 
removed and the recipients received PGF and eCG (400 
IU). On day 11, recipients were treated with GnRH and 
on day 17 recipients received a FTET (Saliba et al., 
2013; Soares et al., 2015). The results showed similar 
efficiency for FTET when different categories of 
recipients (nulliparous, primiparous and multiparous) 
were used (Soares et al., 2015). 
 

Summary and conclusions 
 

Currently there is technology overall to 
establish efficient programs for the use of ART in 
buffalo. The control of follicular wave emergence and 
ovulation at predetermined times, without estrus 
detection, has facilitated the AI programs and the donor 
and recipient management. Synchronization protocols 
are designed to control both luteal and follicular 
function and permit fixed-time AI with high pregnancy 
rates during the breeding (autumn–winter) and 
nonbreeding (spring and summer) seasons. The 
OPU/IVEP is showing promising results, and has 

become an alternative to superovulation for in vivo 
embryo production. The use of this biotechnology 
makes possible to promote a rapid enhancement in 
genetics through both the female and male lineage. 
Therefore, the ART are being established and can 
collaborate for genetic improvement and reproductive 
efficiency, increasing the meat and milk production of 
the buffalo herds. 
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