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Abstract 
 

Cell fate specification, gene expression and 
spatial restriction are process finely tuned by epigenetic 
regulatory mechanisms. At the same time, mechanical 
forces have been shown to be crucial to drive cell 
plasticity and boost differentiation. Indeed, several 
studies have demonstrated that transitions along 
different specification states are strongly influenced by 
3D rearrangement and mechanical properties of the 
surrounding microenvironment, that can modulate both 
cell potency and differentiation, through the activation 
of specific mechanosensing-related pathways. An 
overview of small molecule ability to modulate cell 
plasticity and define cell fate is here presented and 
results, showing the possibility to erase the epigenetic 
signature of adult dermal fibroblasts and convert them 
into insulin-producing cells (EpiCC) are described. The 
beneficial effects exerted on such processes, when cells 
are homed on an adequate substrate, that shows “in 
vivo” tissue-like stiffness are also discussed and the 
contribution of the Hippo signalling mechano-
transduction pathway as one of the mechanisms 
involved is examined. In addition, results obtained using 
a genetically modified fibroblast cell line, expressing 
the enhanced green fluorescent protein (eGFP) under 
the control of the porcine insulin gene (INS) promoter 
(INS-eGFP transgenic pigs), are reported. This model 
offers the advantage to monitor the progression of cell 
conversion in real time mode. All these observations have 
a main role in order to allow a swift scale-up culture 
procedure, essential for cell therapy and tissue 
engineering applied to human regenerative medicine, and 
fundamental to ensure an efficient translation process 
from the results obtained at the laboratory bench to the 
patient bedside. Moreover, the creation of reliable in vitro 
model represents a key point to ensure the development 
of more physiological models that, in turn, may reduce 
the number of animals used, implementing non-invasive 
investigations and animal welfare and protection. 
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Introduction 
 

Epigenetic mechanisms play a key role in cell 
fate specification and ensure a proper regulation of gene 
expression and cell spatial restriction. Several studies 
have demonstrated the possibility to revert 
differentiation process, reactivating silenced genes (Palii 
et al., 2008) and facilitating cell transition to a different 
lineage (Taylor et al., 1984). Beside the epigenetic 
mechanisms driving cell conversion processes, growing 

evidences highlight the importance of mechanical forces 
in supporting cell plasticity and boosting differentiation. 
These transitions along different specification states are 
strongly influenced by 3D rearrangement and 
mechanical properties of the cellular microenvironment, 
that affect both cell potency and differentiation, through 
the involvement of specific mechanosensing-related 
pathways.  

In this manuscript, the ability of small 
molecules to modulate cell plasticity and define cell fate 
is summarized, describing epigenetic erasing and 
conversion of dermal fibroblasts into insulin-producing 
cells (EpiCC). Furthermore, the beneficial effects 
exerted on these processes by the use of an adequate 
substrate, that displays “in vivo” tissue-like stiffness is 
discussed. Moreover, the results obtained from the 
conversion of a genetically modified cell line that 
expresses the enhanced green fluorescent protein 
(eGFP) under the control of the porcine insulin gene 
(INS) promoter (INS-eGFP transgenic pigs) are 
presented. Finally, in order to better characterize the 
mechanisms involved, the contribution of the Hippo 
signalling mechano-transduction pathway along the 
processes are examined. 
 

Epigenetic strategies to erase and rewind cell fate 
 

The mammalian body is composed by more 
than 200 types of cells, each of these arises from the 
zygote, a single cell with half-genome from each parent. 
During embryonic development, pluripotent cells 
progressively restrict their ability to adopt multiple 
lineages to ultimately give rise to a wide variety of 
specialized cells. The process is driven by several 
factors, both extrinsic and intrinsic to the cell (Swain et 
al., 2002), that induce differential gene expression and 
epigenetic restrictions. Cell commitment and 
differentiation are spatially and temporally regulated 
and they occur without any permanent loss or alteration 
of genetic material, but rather through modifications “on 
top of it”. These changes are defined as epigenetic 
modifications and regulate the accessibility to 
transcription factors, in either a positive or a negative 
manner. They are responsible for the ‘epigenetic 
memory’ that underlies the phenotypic stability of the 
differentiated cell state, during subsequent cell divisions 
(Zhu et al., 2013; Jost, 2014; Shipony et al., 2014; 
Brevini et al., 2015). However, the differentiation 
process is reversible and may be altered by biochemical 
and biological manipulations, making it an attractive 
target to reactivate hypermethylated genes and facilitate 
cell phenotype changes. During the last years, the 
possibility to interact with the epigenetic signature of a 
terminally differentiated cell, switching its original
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phenotype into a different one, has been extensively 
described (Agostini et al., 1999; Yoshida et al., 2009; 
Brevini et al., 2014; Pennarossa et al., 2014; Mirakhori 
et al., 2015; Tan et al., 2015; Brevini et al., 2016; 
Chandrakanthan et al., 2016). In particular, it has been 
demonstrated that a short exposure to a demethylating 
agent is sufficient to erase the cell original phenotype 
and induce in terminal differentiated somatic cells a 
high plasticity state. In our experiments, we selected, 
among the many epigenetic erasers available, 5-
azacytidine (5-aza-CR), a DNA methyltransferase 
(DNMT) inhibitor known to activate the expression of 
silent genes (Jones, 1985) and to alter the differentiation 
state of embryonic (Constantinides et al., 1977) and 
mesenchymal cell lines (Darmon et al., 1984). These 
events have been shown to be related to a direct ten-
eleven translocation 2 (TET2)-mediated demethylating 
effect (Manzoni et al., 2016) that accompanies the well-
known 5-aza-CR ability to deplete DNMT 1 enzymatic 
activity (Christman, 2002). Indeed, TET enzymes affect 
cytosine methylation through an active mechanism that 
converts and oxidizes 5-methylcytosine (5mC) to 5-
Formylcytosine (5-fC) and 5-Carboxylcytosine (5-caC), 
with an overall decrease of global methylation. In 
agreement whit this, it has been demonstrated that TET 
activities are indispensable for complete factor-driven 
reprogramming of somatic cells into iPSC. 
 

Epigenetic cell conversion: when you can judge a 
book from its cover 

 
The high plasticity state, achieved by cells after 

5-aza-CR treatment, allows a complete and direct 
differentiation into a new mature and functional cell 
type. Indeed, once cells enter into the higher plasticity 
window, they can easily be directed towards a different 
phenotype through the use of specific differentiation 
stimuli (Brevini et al., 2014; Pennarossa et al., 2014; 
Brevini et al., 2016). In recent paper (Pennarossa et al., 
2013) human dermal fibroblasts derived from adult 
individuals were converted into insulin secreting cells 
using a brief exposure to 1µM 5-aza-CR immediately 
followed by a three-step pancreatic inducing protocol. 
At the end of the epigenetic conversion process, 
fibroblasts acquire an epithelial morphology and express 
the main pancreatic hormones and glucose sensor genes, 
distinctive of mature endocrine cells. Furthermore, 35 ± 
8.9% of starting cell population is able to actively 
release C-peptide and insulin after exposure to 20 mM 
glucose, showing a dynamic response similar to 
pancreatic β-cells, in which changes in ambient glucose 
represent the primary and physiological stimulus for 
insulin secretion. Functionality, efficacy and safety of 
EpiCC have also been demonstrated in vivo with 
injection of converted cells into streptozotocin-induced 
diabetic mice that restored and stably maintained 
physiological glycemic levels after engraftment, with 
absence of malignant transformation and cell migration 
to organs and lymph nodes (Brevini et al., 2018). 
Moreover, a modified  protocol that allows epigenetic 
conversion of fibroblasts into beta-like cells was applied 
to the swine, feline as well as canine species, 

implementing the concept that epigenetic conversion is 
a reproducible and robust technique, that can find useful 
applications in veterinary medicine and management of 
diabetes in pet animals (Pennarossa et al., 2014; Brevini 
et al., 2016). 

Notably, epigenetic conversion was 
successfully used in different cell types, such as 
granulosa cells that were converted into muscle cells 
and human fibroblasts that were differentiated into 
trophoblastic-like cells (Brevini et al., 2014; Arcuri et 
al., 2018; Università degli Studi di Milano, Milan, Italy; 
unpublished data).  
 

Adding a new dimension to cell fate specification 
 

Recent works addressed their attention to tissue 
architecture and mechanical forces and indicated the 
involvement of physical and mechanical cues (together 
with chemical signals) in the control of cell plasticity 
and differentiation. The use of 3D matrix is particularly 
advantageous, in this respect and allows for the 
production of organized arrangements of cells, 
displaying an architecture closer to the in vivo one. 
Several in vitro studies showed, in particular, that the 
use of a surface matching the stiffness of native tissues, 
exerts a direct effect on lineage commitment, positively 
influencing cell differentiation (Engler et al., 2006; 
Evans et al., 2009; Gilbert et al., 2010; Huebsch et al., 
2010) and might be crucial for specific cellular 
functions (Schellenberg et al., 2014). In line with this, it 
was reported that 3D culture systems, mimicking the 
native tissue of embryonic stem cells (ESC), were able 
to exert significant effects on cell shape and induced 
changes in chromatin structures and epigenetic 
remodeling, increasing cell plasticity and pluripotency 
(Demirkaya et al., 2016; Heise et al., 2016). The use of 
micro-wells and microarrays, more in details maximized 
cell-to-cell contact and allowed ESC to form 3D micro-
aggregates with high cell density, resulting in low 
oxygen concentration levels that induce and promote 
self-renewal and pluripotency maintenance (Laschke et 
al., 2010; Kaneko et al., 2012; Yamamoto et al., 2012). 
All these experiments showed a strong relationship 
between fate commitment and mechanical cues, which 
was further supported by recent works, demonstrating 
the possibility to combine mouse ESCs and extra-
embryonic trophoblast stem cells (TSCs) using a 3D 
scaffold that allowed to generate aggregates whose 
morphogenesis was remarkably similar to natural 
embryos (Harrison et al., 2017; Rivron et al., 2018). All 
these show that the microenvironment, provided by the 
traditional polystyrene culture systems, fails to imitate 
the physiological and biochemical features of cells and 
causes deviations in cell response. This is mainly related 
to the significant differences between the stiffness of the 
original tissue and that of several gigapascal (GPa) of 
the plastic support traditionally used (Fig. 1) that 
provides a static environment, does not allow a detailed 
comprehension of the natural tissue architecture, and 
leads to the development of a physiologically limited 
model. In line with this, epigenetic erasing of dermal 
fibroblasts and their pancreatic differentiation into
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insulin-producing cells was  boosted by the use of soft 
substrate, able to mimic the in vivo pancreatic tissue 
stiffness (Pennarossa et al., 2018). In these experiments, 
cell mechano-sensing, and biomechanical properties of 
the surrounding matrix was shown to influence the 
acquisition of cell plasticity and enhance tissue 
differentiation, increase conversion efficiency and 
encourage the acquisition of a mature pancreatic 

phenotype. These data have interesting technological 
impacts in order to increase reliability and increment 
efficiency of the conversion process. This represents a 
key point to ensure an efficient and fast translation 
process from the laboratory bench to the patient bedside, 
since it allows a reduction in the time required from 
patient biopsy to the generation of a sufficient number of 
fully matured cells, ready for the engraftment. 

 

 
Figure 1. All tissues have specific biomechanical properties, expressed as stiffness (E; elastic modulus) and measured 
in kilopascals (kPa). These properties vary among organs and tissues, and are strictly related to tissue function. 
 

YAP and TAZ: the two main actors 
 

Despite increasing evidences demonstrated that 
cell shape, extracellular matrix (ECM) elasticity and 
cytoskeletal tension play important roles in cell 
behaviour and physiology, the way and the molecular 
components that perceive and transduce mechanical 
signals into the cells remain poorly understood. Recent 
studies identified yes-associated protein/WW domain 
containing transcription regulator 1 (YAP/TAZ), the 
main transcriptional effectors of the Hippo signaling 
pathway, as key mechano-transducers acting by nuclear 
relays of mechanical stimuli. In mammals, the Hippo 
pathway is constituted  of a cascade of kinases, such as 
MST 1/2 and LATS 1/2, which lastly phosphorylate 
YAP/TAZ leading to its inactivation and exclusion for 
nuclear accumulation, while its dephosphorylation cause 
YAP/TAZ activation and translocation from the 
cytoplasm to the nucleus (Piccolo et al., 2014). Several 
evidences revealed the role of YAP/TAZ as main sensor 
for mechanical stimuli including cell density, matrix 
stretch and stiffness. Experiments from the Piccolo’s 
lab, as well as others, have examined YAP/TAZ 
activation after altering cellular or extracellular 
mechanical properties (Dupont et al., 2011; Wang et al., 
2016). Moreover, cytoplasmic confinement of YAP has 
been reported to be distinctive of proliferative and 

terminally differentiated cells. In contrast high plasticity 
cells showed the presence of the protein in the nucleus, 
as well as in the cytoplasm (Hemberger et al., 2009; 
Chowdhury et al., 2010; Higuchi et al., 2014), 
demonstrating nuclear YAP essential role in ESC self-
renewal and in the control of the levels of the 
pluripotency genes Oct4, Nanog and Sox2 (Lian et al., 
2010; Young, 2011; Beyer et al., 2013). In line with these 
findings, YAP cytoplasmic accumulation was detected in 
differentiated EpiCC. However, those converted on soft 
substrate showed a significantly higher nuclear immuno-
positivity exclusion compared to cells grown on plastic. 
Furthermore, YAP nuclear localization was described in 
cells exposed to 5-aza-CR regardless of the matrix 
elasticity selected, most likely in relation with the newly 
acquired high plasticity state (Fig. 2).  

Altogether these findings suggest that mechano-
sensing influences the acquisition of cell plasticity and 
induce a significantly higher differentiation efficiency, 
encouraging the acquisition of a mature pancreatic 
phenotype. They also indicate a fundamental role of the 
transcriptional regulators YAP and TAZ as downstream 
elements in how cells receive their physical 
microenvironment. However, the impact of other 
mechanical factors on YAP/TAZ activity, as well as the 
involvement of others molecules in the mechano-
transduction related pathway, require further investigation. 

 

 
Figure 2. Schematic representation of the Hippo signaling pathway. Cells plated on soft polyacrylamide gel (1kPa 
PAA gel) and erased with 5-aza-CR enter a high plasticity state. As ESC, iPSC and any self-renewing cell type, they 
show YAP nuclear accumulation. At the end of the epigenetic conversion, differentiated cells exhibit nuclear 
exclusion and cytoplasmic confinement of YAP.  
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Real time monitoring of pancreatic conversion using 
INS-eGFP fibroblasts 

 
Many physiological phenomena such as 

cellular differentiation, proliferation and communication 
can be attributed to differential gene expression that is 
tightly regulated in response to intrinsic developmental 
programs and extrinsic signals. In order to obtain 
insightful information about the relationship between 
the activation/inhibition of different pathways and their 
effects on gene expression, specific response elements 
are fused to genes encoding reporter proteins. To date, 
reporter genes are widely used in both in vitro and in 
vivo applications to study the promoter and enhancer 
sequences, mRNA processing and translation (Jiang et 
al., 2008). Most reporter genes encoded enzymes whose 
activities can only be monitored by the addition of 
adequate substrates requiring cell lysis or fixation. The 
introduction of green fluorescent protein (GFP) as a 
fluorescent reporter (Chalfie et al., 1994) has improved 
the gene tagging approach allowing non-invasive 
monitoring of gene transfer and protein location in 
living cells. Presently, GFP is one of the most 
frequently used reporter genes in biological systems. 

Recently Wolf’s laboratory generated transgenic pigs 
that express enhanced GFP (eGFP) under the control of 
the porcine insulin gene (INS) promoter (INS-eGFP 
transgenic pigs) to facilitate the identification and 
isolation of porcine beta cells. The results obtained 
using INS-eGFP pig fibroblasts in epigenetic conversion 
experiments are here presented and discussed. Cells 
were either plated on plastic or on 1kPa polyacrylamide 
(PAA) gels -that mimics the stiffness of pancreatic 
tissue in vivo, erased with 5-aza-CR and exposed to 
specific pancreatic differentiation stimuli. The use of 
INS-eGFP fibroblasts, that emit green fluorescence 
when cells start to produce insulin (thanks to the 
activation of the GFP linked with insulin construct), 
allowed real-time monitoring of cell behaviour while 
transiting along the pancreatic differentiation process in 
an easy and immediate way (Fig. 3). The results 
revealed that PAA gels encouraged the induction of 
islet-like structures, supporting the hypothesis that the 
formation of tridimensional clusters may be a crucial 
step of pancreatic differentiation in vitro. Moreover, the 
use of an adequate substrate accelerated cell 
differentiation process and anticipated insulin secretion 
ability.  

 

 
Figure 3. Real-time monitoring of pancreatic differentiation using INS-eGFP porcine fibroblasts plated on standard 
plastic dishes (plastic) and PAA gels (1kPa PAA) at different time points of the endocrine pancreatic induction 
protocol. When cells acquire a pancreatic phenotype and begins to produce Insulin, they emit green fluorescence, 
thanks to the activation of the Green Fluorescent Protein linked to the Insulin construct.  
 

Conclusion 
 

Small molecule ability to modulate cell 
plasticity and define cell fate can be a powerful tool to 
induce pluripotency and/or allow phenotype switch of 
somatic cells. This strategy can be further boosted when 
cells are plated and grown on an adequate substrate, that 
displays “in vivo” tissue-like stiffness and activates the 
Hippo signalling mechano-transduction pathway. These 
findings have interesting impacts in order to ensure an 
efficient and fast translation process from the laboratory 
bench to the patient bedside, allowing swift scale-up 
culture procedures, essential for cell therapy and tissue 
engineering applied to human regenerative medicine. 
Moreover, this represents a key point to ensure the 
development of more physiological models and in turn 
let for the reduction of the number of animals used, with 
a particular emphasis on the concept of non-invasive 
investigations and animal welfare and protection. 
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