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Abstract 
 

The first crucial step in the developmental 
program occurs during pre-implantation, the time after 
the oocyte has been fertilized and before the embryo 
implants in the uterus. This period represents a 
vulnerable window as the epigenome undergoes 
dynamic changes in DNA methylation profiles. 
Alterations in the early embryonic reprogramming wave 
can impair DNA methylation patterns and induce 
permanent changes to the developmental program, 
leading to the onset of adverse health outcomes in 
offspring. Although there is an increasing body of 
evidence indicating that harmful exposures during pre-
implantation embryo development can trigger lasting 
epigenetic alterations in offspring, the mechanisms are 
still not fully understood. Since physiological or 
pathological changes in DNA methylation can occur as 
a response to environmental cues, proper environmental 
milieu plays a critical role in the success of embryonic 
development. In this review, we depict the mechanisms 
behind the embryonic epigenetic reprogramming of 
DNA methylation and highlight how maternal 
environmental stressors (e.g., alcohol, heat stress, 
nutrient availability) during pre-implantation and 
assisted reproductive technology procedures affect 
development and DNA methylation marks. 
 
Keywords: epigenetics, DNA methylation, pre-
implantation embryos, prenatal exposures, 
developmental programming.  
 

Introduction 
 

The rapidly emerging field of epigenetics 
studies genome modifications that regulate gene 
expression without altering the content of the genetic 
sequence. DNA and histones —the structural proteins 
of the chromatin— can possess a layer of reversible 
epigenetic modifications that contribute to how genes 
are expressed and how they interact within a cell. 
Epigenetic modifications are chemical tags, such as 
phosphate, methyl and acetyl groups, affixed to the 
histone proteins and DNA by a highly dynamic and 
synergic network of nuclear enzymes that modulate 
chromatin availability thereby regulating gene 
expression (Jenuwein and Allis, 2001; Gibney and 
Nolan, 2010). The epigenome is of utmost importance 
and comprehensively susceptible to environmental 

factors, (Marsit, 2015; Legault et al., 2018; 
Norouzitallab et al., 2019) particularly during the early 
stages of embryo development as its epigenetic 
regulation is concomitant with proper cell fate 
determination (Morey et al., 2015; Ohbo and 
Tomizawa, 2015; Vougiouklakis et al., 2017). The most 
notable epigenetic mechanism during mammalian pre-
implantation is the epigenetic reprogramming of DNA 
methylation that triggers embryonic genome activation, 
a pivotal step for proper embryo development. While 
these processes are similar between species, they differ 
in regards to the rate and timing of events and sex-
specific variations. Although many studies have shown 
the highly significant physiological roles of the 
epigenome in mammalian development, it is still 
considerably misunderstood and insufficiently studied 
during pre-implantation, partially due to technological 
limitations as a consequence of the very small number 
of cells and the short duration of this stage of 
development. This review will depict the mechanisms 
behind the embryonic epigenetic reprogramming of 
DNA methylation and will assess the epigenetic 
consequences of various assisted reproductive 
technology (ART) procedures as well as how 
environmental stressors during pre-implantation will 
affect short-term and long-term development, focussing 
specifically on the maternal environment. 
 
DNA Methylation  
 

DNA methylation is the most widely 
understood epigenetic modification as a mechanism for 
gene expression mediation and is involved in many key 
physiological processes such as genomic imprinting, 
transposable elements silencing, X-chromosome 
inactivation and aging (Bird, 2002; Smith and Meissner, 
2013). In mammals, DNA methylation occurs mainly on 
the cytosines of cytosine-guanine dinucleotides known as 
CpG sites (CpGs) (Razin and Cedar, 1991; Weber and 
Schubeler, 2007), though non-CpG (i.e. CpA, CpT, CpC) 
methylation can also be found at specific stages of 
cellular development, primarily in stem cells and brain 
tissues (Lister et al., 2013; Patil et al., 2014). The 
enzymes directly responsible for the methylation of DNA 
are DNA methyltransferases (DNMTs). DNMT3A and 
DNMT3B add de novo methylation thus they have been 
identified to be involved in the establishment of 
methylation patterns required for cell lineage 
determination during development (Okano et al., 1999; 
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Li, 2002). For optimal activity, DNMT3A and 
DNMT3B require the accessory protein DNMT3L 
(DNA methyltransferase-like), a protein similar to 
DNMTs but lacking methyltransferase activity (Suetake 
et al., 2004). In contrast, DNMT1 carries out heritable 
DNA methylation pattern maintenance during cellular 
division due to its preference for substrates with hemi-
methylated CpGs, i.e. only one methylated DNA strand, 
which would naturally occur during semi-conservative 
DNA replication (Leonhardt et al., 1992; Lei et al., 1996; 
Pradhan et al., 1999). Although DNA methylation 
patterns are heritable from cell to cell, it remains 
strikingly dynamic in nature. Physiological or 
pathological changes in DNA methylation can occur as a 
response to environmental cues, therefore demethylation 
is conjointly a greatly relevant process. Contrary to 
enzyme-mediated methylation, demethylation can occur 
passively or actively (Kishikawa et al., 2003). Passive 
genome demethylation is replication-dependant, caused 
by DNMT1 reduced activity resulting in an unspecific 
progressive dilution of DNA methylation over multiple 
consecutive cell divisions (Kagiwada et al., 2013; Wu 
and Zhang, 2014). Conversely, active demethylation is 
specific and is catalytically directed by ten-eleven 
translocation enzymes (TET1, TET2, TET3) (Tahiliani et 
al., 2009; Ito et al., 2010). The addition and erasure of 
DNA methylation and other epigenetic marks are the 
driving forces behind embryo development, as they 
dictate how, when and at what level genes are expressed. 

CpGs are present all across the mammalian 
genome but their methylation will bear different 
consequences depending upon their location (e.g. 
promoter regions, gene bodies, enhancers) and upon 
their level of enrichment. CpG methylation located in 
gene bodies has been shown to promote high levels of 
gene expression whereas when located in promoter 
regions, it is associated with transcriptional silencing, 
which coordinates cellular differentiation (Goll and 
Bestor, 2005; Jones, 2012). In mammalian genomes, 
promoters comprised of highly CpG dense sequences, 
known as CpG islands (CGIs), control approximately 
60-80% of genes depending on the species (Antequera 
and Bird, 1993; Saxonov et al., 2006). Methylation of 
CGIs of a promoter accompanied with repressive 
histone modifications (H3K9me3, H3K27me3) induces 
nucleosome compaction and prevents transcription 
factor (TF) binding, causing the repression of gene 
transcription. On the other hand, the promoter regions of 
transcribed genes have CGIs devoid of methylation 
along with active histone modifications (H3K4me2/3, 
H3K9ac) (Barski et al., 2007; Koch et al., 2007; 
Henikoff and Shilatifard, 2011; Severin et al., 2011), 
thus ensuring the open chromatin configuration that 
allows for TF binding and gene activation. However, 
recent studies have started to refute this general rule 
suggesting that, in some cases, the loss of methylation 
can be a consequence of TF binding as opposed to the 
cause of action, leading some to believe that gene 
activation may not always be methylation driven (Zhu et 
al., 2016a; Pacis et al., 2019).  

A particularly important role of DNA 
methylation in mammalian development is genomic 

imprinting. A small cohort of genes called imprinted 
genes possesses germline differentially methylated 
regions (gDMRs). gDMRs acquire monoallelic genomic 
methylation in a parent-of-origin manner causing only 
one allele to be expressed (Reik et al., 2001; Ferguson-
Smith, 2011). A more specific type of gDMR is 
imprinting control regions (ICRs) that are directly 
implicated in the binding of TFs and regulate the 
expression of multiple imprinted genes at a time (e.g., 
H19 and Igf2; Insulin-Like Growth Factor 2) 
(Thorvaldsen et al., 1998; Fitzpatrick et al., 2002; 
Ideraabdullah et al., 2008). These genomic imprints are 
determined prior to fertilization in growing diplotene 
oocytes and in perinatal prospermatogonia and must be 
maintained throughout the entire lifespan of the new 
generation (Stoger et al., 1993; Kono et al., 1996; Davis 
et al., 2000; Ueda et al., 2000).  
 
Embryonic Epigenetic Reprogramming  
 

In early embryogenesis, the embryo undergoes 
a reprogramming wave of DNA methylation during 
which the global methylation profiles, with the 
exception of gDMRs, are remodeled. Shortly after 
fertilization, the zygotic genome remains separated into 
two distinct paternal and maternal pronuclei which must 
sustain extensive global demethylation to erase the germ 
cell-specific methylation profiles and implement 
totipotency prior to implantation of the embryo 
(Seisenberger et al., 2013). The demethylation 
mechanisms are known to be distinct for both pronuclei, 
but have not been fully characterized thus far. Another 
perplexing part of the reprogramming process is the 
maintenance of gDMR methylation patterns as it is a 
major requirement for normal mammalian development. 
In fact, the loss of genomic imprints during embryo 
development causes permanent damage to cellular 
functions since the embryo is unable to restore them 
(Howell et al., 1998; Howell et al., 2001; McGraw et 
al., 2013; McGraw et al., 2015). Since only one allele is 
inherently active, imprinted gene expression is 
hypersensitive to changes in regulation, which can cause 
dramatic effects on development as many imprinted 
genes have growth regulatory functions (Plasschaert and 
Bartolomei, 2014). Many studies in mice have 
demonstrated the prevalent involvement of DNMT1 
variants (DNMT1o; DNMT1-oocyte, DNMT1s; 
somatic) in the maintenance of genomic imprints 
throughout embryonic epigenetic reprograming (Bostick 
et al., 2007; Arita et al., 2008; Avvakumov et al., 2008). 
How DNMT1 specifically recognizes and maintains 
gDMRs but does not maintain global methylation 
remains mostly unclear. However, Dnmt1-/- mice are 
embryonic lethal as the absence of Dnmt1 causes the 
exhaustive loss of genomic imprints and does not allow 
for de novo methylation to be properly maintained 
during remethylation (Li et al., 1992). Moreover, we 
observed that the loss of Dnmt1o caused sex-specific 
placental defects in female embryos as well as perturbed 
imprinted X-inactivation (McGraw et al., 2013). These 
data highlight how a brief perturbation in the DNA 
methylation maintenance process of early stage embryos
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can influence development, and further emphasize the 
importance of studying the impact of the maternal 
environment and sex-specific alterations during this 
critical period. 

The loss of global DNA methylation during 
reprogramming initiates the embryonic genome 
activation, vital for proper development. The thoroughly 
timed expression of genes in embryonic genome 
activation is controlled by chromatin structural changes. 
A schematic representation of the mouse embryonic 
epigenetic reprogramming of DNA methylation is 
depicted in Figure 1, showing the dynamics of DNA 
methylation from the fertilization of the zygote to the 
maturation of embryonic and placental tissues. After 
global demethylation, the inner cell mass and the 

trophoblast gain de novo methylation catalyzed by 
DNMT3A and DNMT3B to implement the epigenetic 
patterns for the development of the embryo and the 
placenta (Red-Horse et al., 2004; Marikawa and 
Alarcon, 2009). Studies conducted in mice have 
indicated separate specific phenotypes in Dnmt3a-/- 
versus Dnmt3b-/-. Dnmt3a-/- mice make it to term, albeit 
severely runted and die shortly thereafter, whereas 
Dnmt3b-/- are embryonic lethal (Niakan et al., 2012). 
The altered expression of these key enzymes is 
unmistakably symptomatic of epigenetic developmental 
disturbances, but it is becoming more and more evident 
that the regulation of the epigenome is also staggeringly 
sensitive to embryonic environment, particularly 
throughout the pre-implantation period.  

 

 
Figure 1. Global DNA demethylation and remethylation during the epigenetic reprogramming of early 
embryogenesis in mice. Soon after fertilization, the zygotic paternal and maternal pronuclei undergo global 
demethylation during the pre-implantation stages, except for gDMRs which are maintained via DNMT1 activity. 
The paternal genome (blue) is initially actively demethylated by the TET3 enzyme followed by passive 
demethylation, whereas the maternal genome (red) demethylation is solely passive due to DNMT1 inactivity, hence 
the sharper demethylation slope for the paternal curve. After implantation, the blastocyst acquires de novo 
methylation patterns catalyzed by DNMT3A and DNMT3B to establish the embryonic and placental programs 
imperative for development initiation.  
 

Early embryonic environment and impact on 
epigenetic reprogramming events 

 
A considerable amount of evidence has begun 

to show how epigenetic programming is susceptible to 
early embryonic environment, such as nutrient 
availability and toxin exposures, prior to implantation of 
the blastocyst. The dynamics of the embryonic wave of 
DNA methylation – proper erasure and de novo 
methylation or methylation maintenance – that is crucial 
to trigger the developmental program can become 
disturbed in response to these environmental cues 
leading to changes in gene expression and growth 
defects. Many have investigated the effects of the 
environment on embryo development using mainly in 
vitro models. However, the direct epigenetic impacts of 
the embryonic environment and the lasting effects on 
long-term development have been poorly studied, due to 
technological barriers and limited number of cells 

during pre-implantation stages. When studying early 
embryonic development exposures, one must be 
cautious when comparing in utero and in vitro models 
being that in vitro culture technologies have yet to 
accurately reproduce the maternal tract conditions. We 
have thus divided the following section describing the 
effects of environmental factors during early embryonic 
development in two parts: firstly, the influence of in 
vitro reproductive technologies of mammalian embryos, 
and secondly, the intrauterine exposures during 
pregnancy.  
 
Assisted Reproductive Technology (ART) 
 

ART is an umbrella term used to describe the 
assortment of medical procedures and approaches (e.g., 
superovulation, in vitro fertilization (IVF), 
intracytoplasmic sperm injection (ICSI), embryo in vitro 
culture (IVC)) that can be performed to achieve
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pregnancy. Such procedures are now an integral part of 
human infertility treatment, as the number of children 
born by ART is estimated at more than 8 million 
worldwide (Weinerman, 2018). ART also plays a major 
role in animal reproduction to increase reproductive 
efficiency and genetic improvement in livestock, as well 
as to conserve endangered species. The outcomes of 
human pregnancies produced by ART have undergone 
intense scrutiny and while most children conceived 
using ART are healthy, these procedures have been 
associated with an increased risk of preeclampsia, 
intrauterine growth restriction, birth defects (Qin et al., 
2016; Zhu et al., 2016b; Choux et al., 2018; Choufani et 
al., 2019) and imprinting disorders (Market-Velker et 
al., 2010; White et al., 2015). Although various studies 
have shown that ART may lead to epigenetic 
perturbations (El Hajj and Haaf, 2013; Urrego et al., 
2014; Duranthon and Chavatte-Palmer, 2018), the 
etiology associated with ART and increased risk of 
perinatal complications is still poorly understood. 
However, the dynamic epigenome reprogramming 
during germ cell development and the pre-implantation 
period, especially of DNA methylation patterns, are 
processes that are prone to being affected by approaches 
used in ART and could provide biological plausibility. 
 

ART procedures 
 

Although it is unclear which ART procedure 
has the greatest influence, we know that the dramatic 
changes in embryo environment can induce long-term 
effects on the epigenome. In ovarian superstimulation, 
various studies suggest that the acquisition of imprinting 
patterns in the oocyte might be perturbed and lead to 
abnormal allelic expression in later embryo and placenta 
development (reviewed in Anckaert et al., 2013; 
McGraw and Trasler, 2013). However, studies show 
that superovulation treatments do not alter normal 
imprinted methylation acquisition in oocytes, but rather 
disrupt maternal-effect gene products that are required 
during pre-implantation for imprint maintenance 
(Denomme et al., 2011; Uysal et al., 2018). We also 
showed that some of these induced errors of imprinted 
gene expression (H19, Igf2) present in mid-gestation 
mouse placenta are no longer apparent at the end of the 
gestation (Fortier et al., 2008; Fortier et al., 2014). This 
suggests that even though superovulation produces 
abnormal oocytes that initiate altered expression of 
imprinted genes in embryos, compensatory mechanisms 
regulating imprinted gene networks are able to restore 
proper levels of gene expression during development. 
Although, as highlighted across the literature, the 
alterations in DNA methylation following ART 
procedures are not always striking and vary between 
studies (reviewed in Berntsen et al., 2019), in part 
because of distinctions in treatments used. It was 
recently reported that human placenta, but not cord 
blood, from IVF/ICSI showed decreased DNA 
methylation levels for imprinted loci H19/IGF2 and 
KCNQ1OT1, as well as for specific repetitive elements 
(Choux et al., 2018), whereas in another recent study, 
no obvious overall differences in genome-wide DNA 

methylation differences in placental tissues were 
associated with ART (Choufani et al., 2019). Yet, a 
subset of ART pregnancies associated with ICSI 
showed marked decrease in placental DNA methylation 
levels at imprinted loci (GNAS, SGCE, KCNQ1OT1 and 
NNAT). Not only do these studies reveal that ICSI 
generates distinct DNA methylation alterations in 
specific tissues compared to controls as opposed to less 
invasive ART procedures, they highlight the importance 
of carefully pairing and comparing equivalent ART 
procedures when designing epigenetic studies.  

Another ART procedure that is routine practice 
in commercial and clinical settings is cryopreservation 
of oocytes and embryos. Flash-freezing 
cryopreservation protocols (i.e., vitrification) have been 
linked to epigenetic alterations.  Selective loss of DNA 
methylation of imprinted loci was observed in 
blastocysts subsequent to fertilization of vitrified bovine 
and mouse oocytes (Chen, Zhang et al., 2016; Cheng et 
al., 2014), whereas others found no effect on DNA 
methylation levels at the H19/IGF2 ICR loci at 
embryonic day 3 in human ICSI blastocysts following 
vitrification (Derakhshan-Horeh et al., 2016). When 
vitrification of mouse embryo at E2.5 (8-cell stage) was 
paired with IVC, transferred embryos revealed 
increased levels of global DNA methylation in both 
E9.5 fetus and placenta compared to IVC, but 
interestingly were similar to naturally mated derived 
samples (Ma et al., 2019). The long-term effect of 
vitrification was further observed in the fetus with 
increased DNA methylation levels at the imprinted 
KvDMR1 loci and significant gene expression increase 
of Dnmt1 and Dnmt3b compared to the IVC and natural 
mating groups. Together, the body of work on 
vitrification suggests that such exposures could 
influence the epigenome and lead to abnormal 
expression of imprinted genes. However, it is difficult to 
make any definitive conclusions regarding the influence 
of vitrification as most of these studies only assessed a 
limited number of loci for DNA methylation analyses, 
which are mostly restricted to imprinted genes, and did 
not investigate the long-term impact on postnatal 
development.  
 

ART culture environment  
 

As previously mentioned, although the vast 
majority of ART-conceived offspring are healthy, they 
have a higher frequency of birth defects suggesting 
epigenetic costs. A large body of research now supports 
that the in vitro culture environment has both long-
lasting and significant repercussions on DNA 
methylation reprogramming events and embryonic 
development, but the exact mechanisms remain unclear. 
In humans, an increased prevalence of Beckwith-
Wiedemann syndrome has been associated with ART 
procedures. This overgrowth disorder has similar 
adverse phenotypes and epigenetic profiles (e.g., loss of 
imprinting) as the large offspring syndrome in 
ruminants, (Chen et al., 2015) for which the incidence 
has been linked to the presence of serum in the culture 
media. (Young et al., 1998; Chen et al., 2013). As such,
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the ART field has mostly limited the use of serum and 
has designed various serum-free and chemically defined 
media for livestock, mice, and humans.  

Various commercial and custom culture 
systems exist but are not as complex and dynamic as the 
oviduct fluid. They may present a lack or excess of 
different key factors and metabolites when compared to 
the maternal reproductive environment (Morbeck et al., 
2014a; Morbeck et al., 2014b; Morbeck et al., 2017). A 
number of different studies have investigated the impact 
of culture systems on epigenetic profiles in humans and 
other animals, but a direct correlation between results is 
challenging as additional associated parameters (e.g., 
culture conditions, protocols, ART-procedures) may 
introduce a range of confounding and unpredictable 
variables. To circumvent these effects, Market-Velker et 
al. (2010) undertook a direct side-by-side comparison 
between naturally mated mouse embryos cultured from 
the 2-cell stage to the blastocyst stage in commercial 
systems and in vivo-derived blastocyst. They uncovered 
that all commercial media compromised the early 
embryo’s proficiency in maintaining genomic 
imprinting profiles of H19, Peg3, and Snrpn to a 
variable extent. Although some media systems appeared 
to be more suitable for maintaining DNA methylation 
levels on these imprinted loci, we cannot know how the 
rest of the genome behaves under these conditions 
because of the narrow epigenetic analyses that were 
performed. Interestingly, a recent study tested the 
addition of natural reproductive fluids in the culture 
system to safeguard the embryo’s epigenome. They 
showed that by using natural reproductive fluids they 
could produce IVF-blastocysts with reduced 
morphological, epigenetic and transcriptomic anomalies 
when compared to porcine blastocysts produced from 
unsupplemented IVF protocols (Canovas et al., 2017). 
Furthermore, by using both whole-genome DNA 
methylation and RNA-seq approaches of single 
blastocysts, they were able to demonstrate that the 
addition of oviductal tract fluid compensated for the 
lack of specific factors in standard culture medium 
required for proper development. Since this strategy has 
been successful so far in improving the ART procedures 
in mice, humans and other livestock animals, it shows 
great potential for rescuing troubled early embryo 
development and future negative impacts in offspring.  
 
Maternal and environmental influences 
 

It is now well established that the maternal 
environment (e.g., nutrition, stress, toxicants) can create 
an adverse in utero milieu that affects the fetal 
developmental program and increase disease 
susceptibility in adulthood (aka. Developmental Origins 
of Health and Disease; DoHaD hypothesis). Since the 
all-or-none phenomenon once presumed that exposure 
that occurs on early stage embryos results in either 
death or in no adverse outcome, little research on the 
impact of harmful maternal environment on pre-
implantation embryos was done in the past. However, 
this once pervasive tenet is now being revisited as 
several studies demonstrate that the direct contact of 

pre-implantation embryo with the cells of the mother’s 
reproductive tract can influence future development via 
interference with epigenetic mechanisms (Adam, 2012). 
Here, we will underline how adverse in uterine 
conditions triggered by the maternal environment 
(alcohol, heat stress) can have deleterious effects on the 
early embryonic epigenome.  
 

Adverse stressors 
 

Alcohol has teratogenic and neurotoxic effects 
on numerous potential mechanisms such as folate 
metabolism and DNMTs activity (Garro et al., 1991; 
Bielawski et al., 2002; Bonsch et al., 2006; Varela-Rey 
et al., 2013). We know that an exposure to alcohol 
during pregnancy can lead to abnormal brain 
development and cause fetal alcohol spectrum disorders 
(FASD), with symptoms ranging from craniofacial 
abnormalities to intellectual deficiency, behavioral 
difficulties and learning disabilities (Chudley et al., 
2005; Cook et al., 2016; Legault et al., 2018). Although 
pioneer work demonstrated that early embryonic alcohol 
exposure can negatively influence development (Checiu 
and Sandor, 1986; Fazakas-Todea et al., 1986; Wiebold 
and Becker, 1987; Padmanabhan and Hameed, 1988), 
we still don’t fully understand how alcohol directly 
impacts the early embryo, especially its epigenome. A 
recent report shows that porcine zygotes exposed to 
alcohol in vitro have a lower rate of blastocyst 
formation, with blastocysts having increased 
mitochondrial dysfunctions and abnormal gene 
expression (Page-Lariviere et al., 2017). Haycock and 
Ramsay (2009) did show in a mouse model that alcohol 
exposure at E1.5 and E2.5 was associated with loss of 
H19 imprinted DNA methylation in the placenta at 
E10.5 and growth restriction (Haycock and Ramsay, 
2009). In early stage embryos, ethanol exposure seems 
to have a lasting impact on Dnmt1 by reducing its 
expression, whereas Dnmt3a and Dnmt3b expression 
levels remained the same (Dasmahapatra and Khan, 
2015). Since Dnmt1 is required for the maintenance of 
DNA methylation profiles, especially imprinted gene 
methylation during the early embryonic reprogramming 
wave (Hirasawa et al., 2008; McGraw et al., 2013), 
alcohol exposure might compromise proper Dnmt1 
function and lead to altered epigenetic phenotypes. 
Although prenatal cigarette and recreational drugs (e.g., 
cocaine, cannabis) exposure have been linked to lasting 
behavioral and neurodevelopmental impairments, low 
birth weight, preterm birth, poor intrauterine growth and 
even infant death (Wehby et al., 2011), as well as 
alterations in DNA methylation and epigenetic profiles 
(Novikova et al., 2008; Toro et al., 2008; Breton et al., 
2009; Guerrero-Preston et al., 2010; Suter et al., 2010; 
Toledo-Rodriguez et al., 2010; DiNieri et al., 2011), 
none of the prenatal expositions were done on pre-
implantation embryos.  As such, preclinical animal 
models of early embryonic exposure are needed to 
determine the deleterious consequence of cigarette 
smoking and recreational drugs on development, 
epigenome and gene expression. By being aware of the 
deleterious effects of cigarette and drug expositions on
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the embryo during the first days of gestation days, 
women wanting to conceive might stop their 
consumption as preventive measures to protect their 
embryo. 

Livestock does not have comparable 
environmental stressors, however, they are exposed to 
changing environmental conditions that affect their 
fertility. For example, livestock fertility, especially in 
dairy cows, is particularly vulnerable to higher 
temperature and humidity. Heat stress disrupts many 
metabolism processes (e.g., microtubules and 
microfilaments reorganization, reactive oxygen species 
production, DNA fragmentation and apoptosis) in 
embryos, leading to disrupted embryo development and 
increased embryonic mortality (Zhu et al., 2008; 
Koyama et al., 2012; de Barros and Paula-Lopes, 2018). 
Heat stress has a greater impact on pre-implantation 
embryos since heat resistance mechanisms are not fully 
developed at this stage. Embryos at 2-cell or 4-cell stage 
will be more affected since the acquisition of these 
processes overlaps with zygotic genome activation 
(ZGA) and early embryos do not respond to 
proapoptotic signals (de Barros and Paula-Lopes, 2018). 
One study suggests that the epigenetic changes seem to 
predominantly impact paternal imprinting genes, as the 
paternal genome is demethylated faster in the first days 
of embryo development compared to the maternal 
genome (Zhu et al., 2008). They reported that 
blastocysts resulting from mouse zygotes exposed to a 1 
hour 40°C heat shock prior to IVC, showed loss of 
DNA methylation for paternally imprinted genes H19 
and Igf-2r, but normal DNA methylation for maternally 
imprinted genes Peg1 and Peg3. However, since these 
embryos were only treated and cultured in vitro, it 
would be pertinent to retrieve oocytes, zygotes or 
embryos from livestock animals exposed to heat stress 
to define how genome-wide DNA methylation profiles 
are disturbed.  
 

Conclusion 
 

Epigenetic modifications, specifically DNA 
methylation, play a crucial role in embryo development 
and are vulnerable to prenatal environmental factors and 
exposures occurring during the pre-implantation period. 
So far, a handful of in vitro studies have explored the 
effects of assisted reproductive technologies as well as 
prenatal environmental conditions and exposures, such 
as alcohol consumption and heat stress, during pre-
implantation looking at short-term effects of severe 
epigenetic disturbances causing early manifestation of 
serious developmental phenotypes. Though mild 
impacts during pre-implantation are hugely 
understudied and may cause latent long-term effects on 
postnatal development. Therefore, there is a dire need to 
study the impacts of early embryo in vitro exposures 
past the blastocyst-stage using embryo transfer 
experiments, as well as early embryo in vivo exposure 
models, while also taking into consideration the 
importance of sex-specific variations and timing of 
exposure. Moreover, very few studies have been able to 
establish the direct link between DNA methylation 

alterations and observed phenotypes, mainly because of 
the limitations in studying the methylome in the early 
stages of development. Cutting-edge adaptations of 
standard whole-genome and reduced bisulfite genome 
sequencing technologies are now rapidly emerging, 
permitting high-resolution low-input single-cell 
methylation analyses. Thanks to these technological and 
intellectual advancements, as well as the integrative 
analysis of multi-omics layers, a promising future lies 
ahead for the study of pre-implantation epigenetics.  
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