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Abstract 
 

The purpose of this review is to summarize 
what we know about preimplantation embryo 
metabolism, focusing on ruminant species, and to 
discuss how this knowledge informs our approach to 
culturing embryos in vitro. The important relationship 
between embryo metabolism and viability will be 
emphasized, and theories of metabolic networks in 
embryos presented. Methods that have historically been 
used to study embryo metabolism will be compared and 
contrasted to a new method of evaluating embryo 
metabolism; metabolomics. Finally, the advantages and 
disadvantages of using metabolomics technologies to 
study embryo metabolism will be critically evaluated. 
The application of metabolomics to assisted reproductive 
technologies, and specifically to embryo culture, will be 
highlighted. We conclude that use of metabolomics to 
study embryo physiology will enlighten our 
understanding of embryo metabolic pathways in the 
context of a complete media that enables good blastocyst 
production. This way of thinking about embryo 
metabolism as dynamic, complex and interrelated 
biochemical pathways, informed by metabolomics, will 
allow us to develop the next generation of embryo 
culture medium to support and manipulate metabolism to 
promote embryo viability, as well as to identify the most 
viable embryos for transfer. 
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viability. 
 

Introduction 
 

Embryos can develop successfully to the 
blastocyst stage in a wide variety of commercially 
available culture media. Although embryos produced in 
vitro exhibit only slightly lower pregnancy rates than 
those produced in vivo, they exhibit reduced survival 
following vitrification and have multiple associated 
problems during pregnancy and parturition, including 
heavier birth weight, extended gestation, and a higher 
incidence of fetal and neonatal loss, suggesting reduced 
embryo quality (Hasler, 2000; Rizos et al., 2002). 
Improvements have been made in the culture of 
embryos from domestic species in the last decade, but 
significant progress in optimizing in vitro embryo 
production remains elusive because we still do not fully 
understand embryonic metabolism. Preimplantation 
embryos exhibit an astonishing degree of metabolic 
plasticity, allowing them to use a variety of metabolic 
substrates via multiple pathways to support development 

in a variety of media that often bear little resemblance to 
the composition of oviductal or uterine fluid. This 
complicates the determination of optimal nutrient 
provisions to support development in vitro. Although 
embryos are capable of adapting their metabolic activity 
to utilize a variety of nutrients in their environment, the 
metabolic costs of adaptation to suboptimal culture 
conditions can compromise embryo viability, 
cryotolerance, maintenance of pregnancy, fetal growth, 
and offspring health. This relationship between 
metabolic activity and viability is central to the 
successful application of assisted reproductive 
technologies. Only by understanding the metabolic 
requirements of the embryo can we design culture 
systems that support the development of viable embryos 
with the best chance of resulting in healthy offspring.  

The application of metabolomics to the 
analysis of embryo metabolism is helping to further this 
understanding. Metabolomics permits investigation of 
embryo physiology in a focused, in depth manner that 
has not been previously possible, allowing us to think 
about embryo metabolism as a complex interplay of 
multiple metabolic mechanisms. This technology has 
tremendous potential to expand our knowledge of 
embryo metabolism because it can be applied non-
invasively to the study of embryo physiology via the 
simultaneous measurement of multiple substrates 
following culture in an optimized medium. A 
metabolomics approach not only provides information 
about suspected pathways of importance, but also about 
unknown regulatory mechanisms and metabolic 
intermediates. Information provided by metabolomics 
will inform the development of improved embryo 
culture media to reduce in vitro stress and adaptation, as 
well as methods to regulate metabolism in vitro to 
improve embryo quality. In addition, specific metabolic 
fingerprints characteristic of high quality embryos will 
be discovered.  
 

Metabolic networks in mammalian embryos 
 

Existing studies have provided a glimpse of the 
diverse metabolic mechanisms used by embryos, and 
hinted at the dynamic, tightly controlled biochemistry 
over the time course of preimplantation development. 
However, we have only begun to appreciate these 
mechanisms and how they are controlled. Interpretation 
of metabolic studies is complicated by in vitro 
conditions, and we still do not have a good 
understanding of how embryos are operating 
metabolically within the larger context of their 
environment, much less what pathways they should be
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utilizing to promote optimal quality. Several 
hypotheses, not necessarily mutually exclusive, have 
been proposed to understand embryo metabolism in a 
larger context. The Quiet Embryo Hypothesis proposes 
that viable embryos have lower overall metabolism 
because they are not responding to cellular stress 
(Leese, 2002; Baumann et al., 2007; Leese et al., 2007,  
2008). Energy requirements are increased with stress, 
suggesting that elevated metabolism has a negative 
relationship with embryo viability. Embryo metabolism 
has also been hypothesized to mirror that of cancer 
cells, which use a metabolic strategy known as the 
Warburg Effect (Warburg, 1956; Krisher and Prather, 
2012; Smith and Sturmey, 2013). Warburg metabolism 
is thought to support rapid cellular proliferation by 
providing precursors for macromolecular synthesis and 
oxidative stress management, and is known to be 
involved in the control of cellular differentiation 
(Vander Heiden et al., 2009, 2010; Panopoulos et al., 
2012; Zhang et al., 2012). Although the tricarboxylic 
acid (TCA) cycle is a much more efficient means of 
producing ATP when compared to glycolysis, the 
embryo may have more important metabolic uses for 
glucose than simply ATP production. This may include 
redox control and macromolecular synthesis, including 
DNA, RNA, proteins and lipids to support rapid 
embryonic growth. It may be too simplistic to view 
embryo glucose metabolism as primarily a means to 
produce ATP, ignoring the embryo’s biosynthetic 
requirements. In this case, fatty acids and/or amino 
acids likely support basal TCA activity to provide ATP.  
 

Embryo metabolism 
 

Although embryo metabolism has been well 
investigated, the basis of our current understanding 
primarily comes from studies of the murine embryo and 
its use of a limited number of substrates, primarily the 
carbohydrates glucose, lactate and pyruvate and 
occasionally the amino acid glutamine. The pioneering 
studies of Biggers and Brinster (Brinster, 1965a, b; 
Biggers et al., 1967) led to a model in which cleavage 
stage embryos primarily utilize pyruvate and lactate 
while a reliance on glucose metabolism via glycolysis 
characterizes the blastocyst prior to implantation, when 
higher glucose uptake is a signature of viability 
(Gardner and Leese, 1987; Gardner et al., 2001). Fifty 
years later, this model is still surprisingly accurate and 
widely cited as the generalized pattern of metabolic 
activity in the mammalian embryo. However, these 
studies were conducted in simple media (salts, 
carbohydrates, and protein) that do not support optimal 
development. For example, oviductal and uterine fluids 
contain all 20 of the basic amino acids (Harris et al., 
2005; Hugentobler et al., 2007; Li et al., 2007), in 
contrast to early culture medium formulations in which 
glucose and lactate were present in supra-physiological 
concentrations and no amino acids were present 
(Brinster, 1965a; Whitten and Biggers, 1968).   

In ruminants, pyruvate uptake exceeds that of 
glucose at the early cleavage stages (Rieger et al., 1992; 
Gardner et al., 1993; Thompson et al., 1996). Similarly, 

~90% of ATP is derived from oxidative metabolism 
prior to compaction, with pyruvate and glutamine being 
the preferred substrates (Thompson et al., 1991, 1996; 
Rieger et al., 1992; Gardner et al., 1993). Even though 
glucose is not the “preferred substrate”, early bovine 
embryos do utilize glucose, with increases in PPP and 
glycolysis during preimplantation development (Wales 
and Brinster, 1968; Leese and Barton, 1984; Pantaleon 
et al., 2001; Comizzoli et al., 2003). Glucose 
consumption, hexokinase activity, and lactate 
production increase from the zygote to morula stages 
(Wales and Brinster, 1968; Leese and Barton, 1984; 
Gardner and Leese, 1986, 1988; O'Fallon and Wright, 
1986; Saito et al., 1994; Houghton et al., 1996). In post-
compaction ruminant embryos there is a shift to glucose 
metabolism, with an increase in glucose uptake, lactate 
production, glycolytic activity, and the proportion of 
ATP produced via glycolysis (Thompson et al., 1991, 
1996; Rieger et al., 1992; Gardner et al., 1993). 
Pyruvate uptake and oxidation also increase during 
blastocyst development (Rieger et al., 1992; Gardner et 
al., 1993; Thompson et al., 1993, 1996; Krisher et al., 
1999; Khurana and Niemann, 2000), even though 
glucose is the primary substrate. Oxidation of lactate 
and pyruvate appear to be inversely related, with 
inclusion of one substrate in the medium inhibiting 
metabolism of the other during pre-compaction 
development (Khurana and Niemann, 2000). Isolated 
trophectoderm cells from bovine blastocysts consumed 
less glucose and more pyruvate, and produced more 
lactate than inner cell mass cells (Gopichandran and 
Leese, 2003).  

Glucose is present in the bovine oviduct at a 
concentration of ~2.5 mM (Hugentobler et al., 2008, 
2010). However, there are culture media that 
successfully support development of bovine 
preimplantation embryos with glucose (SOF; Tervit et 
al., 1972; Steeves and Gardner, 1999; Gandhi et al., 
2000) and without glucose (CR1aa; Rosenkrans and 
First, 1994); (mSOF; Takahashi and First, 1992). 
Because the cow and pig embryo are able to develop in 
vitro from the 1-cell stage to blastocyst in the absence of 
exogenous glucose, without any known detrimental 
consequences, it may be possible that pyruvate is 
converted to phosphoenolpyruvate (PEP) by 
mitochondrial enzymes, which may participate in the 
reversible reactions of glycolysis to supply 
intermediates for the PPP. 

With the exception of glutamine, the majority 
of metabolic studies have focused on carbohydrates.  
However, porcine, bovine, and ovine embryos will 
develop to the blastocyst stage with protein and/or 
amino acids (AA) as the only exogenous nutrient 
sources (Petters et al., 1990; Thompson et al., 1992; 
Sutton-McDowall et al., 2012). Numerous studies have 
shown that AA have beneficial effects on the 
development of embryos from multiple species when 
added to the culture medium (Liu and Foote, 1995; 
McKiernan et al., 1995; Lane and Gardner, 1997; 
Steeves and Gardner, 1999; Biggers et al., 2000; Lane et 
al., 2001; Suzuki and Yoshioka, 2006). Specific amino
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acids are consumed (depleted from the medium) and 
produced (secreted into the medium) by embryos from 
mice, pigs, cattle, and humans (Houghton et al., 2002; 
Orsi and Leese, 2004; Humpherson et al., 2005; Wale 
and Gardner, 2012). Presumably some of the consumed 
amino acids are used for protein synthesis, but other 
possible fates for the amino acids are not clear. Amino 
acids can act as osmotic buffers, helping the embryo to 
maintain cellular homeostasis (Baltz and Zhou, 2012). 
Ammonium production by embryos cultured with amino 
acids also indicates that some amino acids are being 
converted to TCA cycle intermediates for generation of 
ATP (Gardner et al., 2001; Lane et al., 2001). Since 
ammonium can be inhibitory to development, embryos 
have mechanism to detoxify ammonium and prevent its 
build-up in the cytoplasm or the culture medium. 
Murine and bovine embryos are capable of producing 
glutamine from ammonium and glutamate and/or 
producing alanine from glutamate, pyruvate, and 
ammonium (Orsi and Leese, 2004; Wale and Gardner, 
2013). The resulting alanine and glutamine are secreted 
into the medium, which has been observed in a number 
of studies (Houghton et al., 2002; Orsi and Leese, 2004; 
Humpherson et al., 2005; Wale and Gardner, 2013; 
Krisher et al., 2015).  

The study of carbohydrate metabolism has 
overshadowed the contribution of fatty acid β-oxidation 
(FAO) until relatively recently. Cow, pig and cat 
oocytes have large stores of intracellular lipids while the 
mouse has fewer lipid stores, a fact reflected by the 
color of the cytoplasm (McEvoy et al., 2000; Leroy et 
al., 2005a). In humans and domestic ruminants, 
palmitic, stearic and oleic are the most abundant fatty 
acids in oocytes, while pig oocytes contain greater 
polyunsaturated fatty acids, particularly linoleic acid 
(Homa et al., 1986; Matorras et al., 1998; McEvoy et 
al., 2000; Kim et al., 2001). Even those species with a 
relatively low concentration of lipids, like mice, rabbits, 
and humans, have been shown to actively metabolize 
this nutrient source (Khandoker and Tsujii, 1998; 
Haggarty et al., 2006; Dunning et al., 2010; Paczkowski 
et al., 2014). Inhibition of fatty acid oxidation decreases 
embryonic development in both mice and cattle 
(Hewitson et al., 1996; Ferguson and Leese, 2006). The 
addition of fatty acids or carnitine to stimulate FAO to 
oocyte and embryo culture medium has primarily shown 
positive effects on development, although results are 
variable due in part to differences in type and 
concentration of fatty acid used (Spindler et al., 2000; 
Leroy et al., 2005b; Dunning et al., 2010; Marei et al., 
2010; Somfai et al., 2011; Van Hoeck et al., 2011; Wu 
et al., 2011).  
 

Historic approaches to measuring metabolism 
 

To date, most of what we know about embryo 
metabolism has been determined using radiolabeled 
substrates or microfluorescence. Radiolabeled substrates 
provide information about specific pathways, depending 
on the location of the label on the original substrate and 
the end metabolite. Microfluorescence is based upon 
enzymatically coupled reactions associated with 

changing ratios of NAD(P)+:NAD(P)H. Both methods 
result in precise quantitation of substrate metabolism. 
Perhaps the most important consideration when 
interpreting these results is that embryo metabolism is 
not only affected by the conditions in which the embryo 
develops, but also the medium in which metabolism is 
assessed (Gardner and Leese, 1990; Lane and Gardner, 
1998; Krisher et al., 1999; Gandhi et al., 2001). Another 
drawback to metabolic measurement is that we are 
unable to measure the metabolic pathways that are 
normally used by embryos in vivo, so we are never 
completely confident of what an embryo should be 
doing metabolically. Of course, we can compare the 
metabolism of in vivo-derived embryos to that of in 
vitro cultured embryos, but we must keep in mind that 
there will likely be some sort of adaptation to the in 
vitro environment (Lane and Gardner, 1998). Even 
given these caveats, metabolic studies have provided 
important information that has helped us understand 
metabolic mechanisms in mammalian embryos.  
 

Metabolomics 
 
 It is only recently that technological advances 
in automation and information technology have allowed 
the basic techniques of metabolomics to be applied to 
the study of embryo metabolism (Hollywood et al., 
2006; Brison et al., 2007; Seli et al., 2007; Krisher et 
al., 2015). Metabolomics offers multiple advantages 
over previous methods. This technology is able to 
measure uptake and production of multiple substrates by 
the embryo by non-invasively analyzing the medium 
following in vitro culture. This represents a significant 
advance in our ability to examine embryo metabolism in 
a complex environment during preimplantation 
development, compared to our current snapshots of 
isolated pathways measured in modified media not 
designed to support long term embryo culture. This 
approach also leaves the embryo viable for transfer, thus 
lending itself to the discovery of a metabolic signature 
characteristic of high quality embryos that could be used 
to select embryos for transfer (Singh and Sinclair, 
2007). 

Typically, medium is analyzed following in 
vitro embryo culture and compared to medium without 
an embryo to ascertain how the composition of the 
culture medium was altered, commonly referred to as 
the metabolic ‘footprint’ of the embryo. Although an 
indirect measurement, it provides specific information 
about what substrates the embryo is taking up and 
producing, providing clues as to the pathways in 
operation. Metabolomics provides information about 
how the embryos use substrates that we know are 
included in the culture medium using a targeted 
approach (measuring a predefined set of metabolites). In 
addition, a non-targeted approach can be used that will 
collect information about all detectable metabolites, 
known and unknown, to generate novel information 
about embryo biochemistry. While the non-targeted 
approach investigates a larger cohort of metabolites, the 
datasets are large and complex. Recent improvements in 
informatics workflow for metabolomics have helped
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mitigate this issue, improving both metabolite 
annotation and interpretation on a large scale. Another 
key point to consider when using metabolomics to study 
embryo metabolism is that quantitation is usually 
relative. In this circumstance, the amount of a particular 
substrate taken up by the embryo is reported as a 
percentage of what was detected in medium without an 
embryo. This makes inclusion of appropriate media 
controls, collected from the same culture dish and 
treated identically to sample drops, paramount. 
Although this method of relative quantitation does not 
provide information about the concentration of any 
given substrate, it does provide data regarding those 
substrates embryos are consuming or producing in 
statistically significant quantities compared to the total 
amount available. Absolute quantitation is possible for 
some known metabolites by calibrating sample values to 
a standard curve, which permits better comparison 
between metabolomic studies as well as to metabolism 
studies carried out using other techniques. However, 
this increases cost and can be difficult to do for large 
numbers of metabolites. It is important to note that 
absolute quantitation is not necessary to make valid 
metabolomic comparisons. Often, both uni- and 
multivariate statistical analyses enable recognition of 
differences or changes in metabolite profiles that can be 
used as markers of disease or toxicity, even before 
specific metabolites are quantified, or even identified. 

Several platforms can be adapted for 
metabolomics, although mass-spectrometry based 
approaches are ideally suited for the sensitivity, 
complex composition and low sample volume inherent 
in analyses of embryo culture media. Multiple platforms 
have been reported for analysis of embryo metabolism, 
including gas or liquid chromatography (GC and LC, 
respectively) and/or matrix-assisted laser 
desorption/ionization (MALDI) coupled to mass 
spectrometry (MS), as well as nuclear magnetic 
resonance (NMR), Raman, or near infra-red (NIR) 
spectroscopy. If MS is used, measurement of the 
molecules’ mass, or the masses of distinctive fragments 
of that molecule following derivitization, results in a 
specific molecular fingerprint that then allows 
identification of the metabolite when compared to 
known databases. The sensitivity of these methods 
permits the analysis of individual embryos, negating the 
need for embryo pooling and providing the opportunity 
to associate specific metabolic profiles with embryo 
competence post transfer.  

Along with the power inherent in the 
application of metabolomic technology to embryo 
metabolism, there are some limitations. It is only 
possible to detect net differences in culture medium 
with and without an embryo. If the same substrate is 
both consumed and produced by the embryo, resulting 
in a net change of zero, it will not be detected as 
metabolic activity. It is also not possible to differentiate 
between the same substrate originating from the culture 
medium or the embryo. For example, these techniques 
cannot distinguish between lactate from the culture 
medium and lactate produced by the embryo, only the 
total lactate value is obtained. Substrates labeled with 

stable isotopes (such as 13C) can be used to overcome 
these problems, but not in embryos destined for transfer. 
Similarly, if the culture medium lacks a metabolite 
important for embryo metabolism and development, a 
metabolomics approach will not reveal its absence. An 
additional limitation of metabolomics is that to obtain 
information about many intermediates in metabolic 
pathways, which is critical to understanding pathway 
preference, the embryo must be analyzed directly and 
thus destroyed. Additionally, in most cases fewer 
metabolites will be analyzed than are actually detected 
in the complete sample spectrum. This may be because 
a targeted approach is used where only known 
metabolites are specifically examined, because some 
metabolites are unknown, or because some were not 
accurately detected. A final drawback to metabolomics 
technology is that current platforms are expensive and 
complex, requiring experts to both run the samples and 
analyze the data, resulting in relatively slow throughput 
and making them unrealistic for most assisted 
reproductive technology (ART) laboratories (Montag et 
al., 2013). However, blastocyst vitrification provides the 
time necessary to perform these complex analyses at a 
specialized core facility prior to embryo transfer.  
 
Applications of metabolomic technology to assisted 

reproduction 
 

Metabolomic profiling provides a large amount 
of information describing the metabolic activity of 
individual embryos. Now that we can successfully 
undertake such studies, we must consider the impact 
that this information might have in ART. Can the 
knowledge generated by this technology improve ART? 
Certainly, a primary outcome is that of basic knowledge 
leading to an improved understanding of embryo 
metabolism. Then we can expand our experiments to 
determine how embryo metabolism changes during 
preimplantation development, discover how embryo 
metabolism is altered by maternal disease, and in what 
manner embryo quality is reflected by metabolism. 
Finally, we can then address the overarching question of 
how these factors interact with the environment in 
which the embryo finds itself to influence competence. 
These studies should lead to the formulation of 
improved culture media that manage embryo 
metabolism to alter the activities of specific pathways 
critical to embryo quality that are not supported in 
conventional media. 

Metabolomics has been used for research of 
embryo metabolism, providing novel basic information. 
Although analyzed in groups, the metabolome of mouse 
embryos has been defined using tandem mass 
spectrometry (LC-MS/MS) and capillary electrophoresis 
TOF-MS (Wale and Gardner, 2012; Yamada et al., 
2012). Our laboratory has reported metabolomic 
analyses of mouse, bovine and human embryos using 
GC- and MALDI- MS relative to species, stage of 
development, embryo quality, maternal characteristics, 
and culture conditions (Krisher et al., 2015). Lipids are 
one class of metabolites that have begun to be studied in 
depth in oocytes and embryos using metabolomic
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techniques. Using MALDI-MS, the lipid content of 
individual oocytes and embryos from several species 
was defined, and alterations in lipid profile of bovine 
embryos due to culture with serum were described 
(Ferreira et al., 2010). MALDI time of flight (TOF) MS 
was used to evaluate the lipid profile of human cumulus 
cells, demonstrating that phosphatidylcholine might be 
used as a marker of oocytes capable of producing an 
embryo that results in pregnancy (Montani et al., 2012). 
Desorption electrospray ionization mass spectrometry 
(DESI-MS) has been used to describe changes in lipid 
profile during preimplantation development in the 
mouse, and described differences between embryos 
produced in vitro and in vivo (Ferreira et al., 2012). In 
bovine embryos, MALDI-MS revealed differences in 
phosphatidylcholine and sphingomyelin due to in vitro 
culture as well as subspecies of origin (Sudano et al., 
2012). 

A relatively unheralded application of 
metabolomics in the ART laboratory is the 
identification of embryo-toxic contaminants in contact 
materials. Significant quality testing is currently 
performed, typically using the mouse embryo assay, to 
determine the suitability of specific lots of reagents and 
plastic ware for human embryo culture. Many products 
are tested by both the supplier and the end user, and 
products are detected that compromise embryo 
development. However, there is no understanding of the 
contaminating compounds present that render lots 
unsuitable. If these compounds could be identified, 
products could be prescreened to eliminate those with 
known contaminants causing negative effects on 
embryo growth. This would not only significantly 
reduce the chance that these products would reach the 
ART laboratory, but would also decrease resources used 
for testing.  

Probably the most anticipated application of 
metabolomics to ART, however, is the development of a 
biomarker for embryo viability. Given that embryo 
metabolism is so closely linked to viability, a metabolic 
biomarker is of great interest (Nel-Themaat and Nagy, 
2011; Gardner and Wale, 2013). Research has provided 
compelling evidence that metabolism, and amino acid 
turnover in particular, is related to embryo quality in 
humans and other mammalian species (Houghton et al., 
2002; Brison et al., 2004; Sturmey et al., 2008, 2010; 
Hemmings et al., 2012; Gardner and Wale, 2013). To 
date, morphology is the most widely used method by 
which to identify viable embryos. However, it is widely 
accepted that this parameter provides only limited 
information about an embryos ability to implant and 
support a viable pregnancy (Botros et al., 2008). Initial 
reports suggested that metabolomic analyses may 
provide a better predictive tool for embryo selection, 
compared to morphology alone (Nagy et al., 2008; 
Marhuenda-Egea et al., 2010; Cortezzi et al., 2013). 
Retrospective studies using Raman and NIR 
spectroscopy, as well as electrospray ionization MS 
(ESI-MS), defined associations between spent media 
profiles and the potential for successful implantation in 
human ART (Nagy et al., 2008; Sakkas et al., 2008; 
Scott et al., 2008; Seli et al., 2010; Marhuenda-Egea et 

al., 2011; Pudakalakatti et al., 2013; Zivi et al., 2014). 
Randomized controlled trials based upon these 
retrospective results were undertaken but selection using 
the metabolomics based viability index did not increase 
pregnancy rate compared to selection based upon 
morphology alone (Hardarson et al., 2012; Vergouw et 
al., 2012; Uyar and Seli, 2014), possibly due to 
limitations in sensitivity of this platform (Gardner and 
Wale, 2013). Of interest, these studies did not identify 
specific metabolites, only calculated a viability index 
based upon the spectrum of unspent media. The goal 
here was biomarker-based prediction, not the generation 
of knowledge that would inform what we know of 
embryo metabolism.  
 

Conclusions 
 

It is clear that metabolic activity is a critical 
indicator of embryo viability. The success of assisted 
reproductive technologies involving even a small 
amount of time in culture is dependent on providing the 
embryo with an appropriate combination of substrates 
that will support normal metabolic activity and 
minimize cellular stress. Although our understanding of 
embryo metabolism has improved greatly since the 
early work of Biggers and Brinster (xxx), there is still 
much work to be done. To understand the relationship 
between metabolism and viability, we must examine the 
complex metabolic pathways in total and appreciate 
their interrelationships. We are just starting to realize 
the diversity of metabolic mechanisms present among 
embryos from different species.  Previous studies have 
provided only snapshots of metabolic pathways in 
isolation. However, application of metabolomic 
technologies to the analysis of embryo metabolism 
permits visualization of metabolism in optimized culture 
conditions and in the context of a complete metabolic 
system. To date, metabolomic technology has been 
successfully applied to the study of embryo metabolism, 
although most studies have been descriptive in nature. 
These initial studies have provided important new 
information about the metabolic activity of embryos 
during development in vitro, and have begun to address 
the relationship between metabolism and quality. Now 
the field is poised to expand this work to address 
experimental hypotheses for basic research, and apply 
the knowledge gained. Ultimately metabolomic data 
will provide in depth detail of biochemical pathways 
used by embryos under various conditions, 
revolutionizing our understanding of embryo 
biochemistry and leading to the ability to manipulate 
metabolism in vitro to support improved embryo 
development, and allowing the identification of the most 
metabolically viable embryos.  
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