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Abstract 
 
Mammalian embryo implantation requires the priming 
of the maternal immune system, but, not the 
provocation. There are many examples of conditions 
where a disturbed or aberrant immune profile during 
embryo implantation leads to pregnancy loss. However, 
these studies are primarily associated with human and 
mouse species; data is generally limited for cattle and 
livestock. Most available information centres on the 
endometrial response to interferon tau (IFNT), a type I 
antiviral cytokine, which is the maternal recognition 
factor for cattle and sheep. Interferon tau secretion by 
the embryo and detection by the dam is critical to 
corpus luteum (CL) maintenance and pregnancy 
retention. However, the large volume of bovine 
endometrial and conceptual transcriptomic data 
highlights a broader more integral role of the maternal 
immune system in the establishment of pregnancy in 
cattle. When taken together with available 
immunohistochemistry and flow cytometry data from 
livestock, mouse, and human,  a profile of immune cell 
involvement from ovulation to conception and 
placentation emerges. The key events of pregnancy 
establishment in cattle and the involvement of the 
maternal immune system will be discussed. 
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Introduction 
 

The maternal immune system plays a critical 
role in mammalian embryo implantation. Successful 
establishment of pregnancy requires the activation of a 
controlled immune response that is simultaneously 
responsive and tolerant towards paternal antigens and the 
semi-allogenic embryo. The discipline of Reproductive 
Immunology has received considerable attention from a 
human clinical point of view and much data has been 
gathered from patients and generated from various mouse 
and in vitro model systems. In contrast, information from 
cattle mostly revolves around the endometrial response to 
the maternal recognition factor for cattle and sheep, the 
type I antiviral cytokine, interferon tau (IFNT), detection 
of which by the dam is critical to corpus luteum (CL) 
maintenance and the establishment of pregnancy. The 
greatest source of information has come from the large 
volume of bovine endometrial and conceptal 
transcriptomic data that has been generated in the past 
decade. The emerging knowledge clearly indicates that 
regardless of specificities in placentation physiology, an 
appropriate maternal immune response is just as critical 

to the establishment of pregnancy in cattle as it is in 
human and rodents.  

In cattle, the first three to four cell cycle 
divisions post fertilization occur in the oviduct, such 
that the embryo enters the uterus on approximately day 
4 post fertilization. There it undergoes a number of cell 
divisions to form the morula which, after differentiation, 
forms a blastocyst consisting of the inner cells mass 
(which will eventually give rise to the embryo/foetus) 
and an outer cell mass consisting of trophectoderm cells 
which ultimately give rise to the placenta. Up to this 
stage, the embryo is encased in the glycoprotein shell, 
the zona pellucida. Therefore the endometrial lining is 
not exposed to paternal antigens again until hatching, 
which occurs from day 8 to 9 post fertilization. 
Transcriptomic analysis of the bovine endometrium 
during this early stage of pregnancy indicates little or no 
change in gene expression in response to the zona-
enclosed blastocyst stage embryo (Forde et al., 2011; 
Forde and Lonergan, 2012). Once hatched, the 
blastocyst forms an ovoid-shaped conceptus between 
days 12-14 and the elongation process begins. 
Elongation entails rapid proliferation of the conceptus 
trophectoderm cells, reaching 3-4 mm or more in length 
by day 14 (Randi et al., 2015), and 25 cm or more in 
length by day 17. As the embryo elongates, the 
trophectoderm and endometrial luminal epithelium (LE) 
become closely apposed, see Spencer et al. (2007), for 
review. During this period the conceptus relies on 
maternal secretions, collectively termed histotroph, for 
survival (Bazer, 1975). In contrast to mouse and human 
species, implantation in cattle is non-invasive. It is 
characterized by a superficial attachment and adhesion 
of the trophectoderm to caruncular and intercaruncular 
areas, commencing about day 19 (see Brooks et al., 
2014), for review. During implantation, bovine 
trophectoderm cells form binucleate cells (BNCs) as 
well as trinucleate cells (TNCs), TNCs are products of 
fusion between binucleate cells and uterine epithelial 
cells (Wooding and Beckers, 1987) and are only located 
in the endometrium (Wooding, 1992). These 
multinuclear cells may play a role in implantation, 
contributing to the adhesion between conceptus and 
uterine endometrium at the placentomes. In cattle, 
several integrin family members (ITGs) have been 
characterized at the uteroplacental interface during 
trophectoderm attachment (MacIntyre et al., 2002; 
Pfarrer et al., 2003) and placentation (Pfarrer, 2006) 
periods and are believed to play constitutive roles. 
Similarly, the transmembrane glycoprotein, vascular cell 
adhesion -molecule (Osborn et al., 1989), is also regarded 
as a cell adhesion mediator during the processes of 
lymphocyte homing (May et al., 1993), angiogenesis
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 (Ding et al., 2003) and allantoic membrane fusion to 
the chorion (Gurtner et al., 1995). The key events and 
interactions between the embryo and the dam are 
presented and reviewed. 
 

The role of the embryo in the maternal immune 
response 

 
Response to insemination 

 
During transmission of seminal plasma (SP) at 

coitus, cells of the maternal immune system recognize 
various signaling constituents of semen, including 
interleukin (IL) -8, transforming growth factor beta 
(TGFB) and IFNG. In addition, sperm antigens are 
recognized as foreign (Robertson, 2005). The 
recognition of non-self initiates activation of a maternal 
immune response, which may ultimately confer 
immunological tolerance to paternal antigens that will 
be expressed by the embryo that develops after 
fertilization (Moldenhauer et al., 2009). The first stage 
of the maternal immune response is characterized by an 
influx of eosinophils and neutrophils to the uterine 
lumen. Data from mice show that chemoattractants 
released by these cells, such as granulocyte macrophage 
colony-stimulating factor (GM-CSF) and (IL) -6, attract 
both monocytes and dendritic cells, potentially creating 
an environment that regulates the inflammatory status of 
responding macrophages and increases expression of 
factors which promote early embryo development 
(Robertson et al., 1996, 2000; Robertson, 2007; 
Bromfield et al., 2014). Data from mice indicate that the 
absence of changes in the reproductive tract caused by 
SP can alter the developmental program of the 
developing conceptus (Bromfield, 2014). This cell-free, 
fluid fraction of the ejaculate is significantly diluted 
during semen preparation for use in AI programs, thus 
cows bred in this manner are only exposed to trace 
amount of SP. However, the relatively high pregnancy 
rates achieved in cattle following artificial insemination 
(AI) or embryo transfer (ET) suggest that maternal 
exposure to SP is not a critical component of the 
maternal immune response in cattle (Lima et al., 2009; 
Odhiambo et al., 2009).  

 
Molecular response of maternal endometrium to the 
embryo 

 
The presence of a rapidly elongating embryo is 

certainly registered by the maternal endometrium, as 
there is a dramatic change in global gene expression at 
this time (Forde et al., 2011). The type 1 interferon, 
interferon tau (IFNT), is the main signaling factor in 
maternal detection/recognition of pregnancy in cattle 
and sheep (Hansen et al., 1999; Choi et al., 2003). IFNT 
is secreted by the elongating conceptus, specifically the 
trophectoderm (Robinson et al., 2006). It is believed 
that the luminal epithelium of the uterine endometrium 
is the primary target for IFNT (Roberts et al., 1992; 
Imakawa et al., 2002); IFNT binds to a common 
receptor complex with two polypeptide subunits 
(IFNAR1 and IFNAR2; Rosenfeld et al., 2002). There 

is evidence to suggest that IFNT can reach the stroma, 
the uterine myometrium (Ott et al., 1998, Johnson et al., 
1999, Hicks et al., 2003) and most likely, the circulating 
immune cells and the ovaries as well (Shirasuna et al., 
2012). IFNT acts on the endometrium to stimulate the 
expression of genes that promote conceptus growth and 
development and induce uterine receptivity (Hansen et 
al., 1997, Johnson et al., 2000, Song et al., 2007; 
Mansouri-Attia et al., 2012). Candidate and global gene 
expression analysis revealed that a classical Type I IFN 
response during the peri-implantation period is induced 
by the conceptus/IFNT (Li and Roberts, 1994; Spencer 
et al., 2008; Mansouri-Attia et al., 2012;). Induced 
endometrial classical Type I IFN stimulated genes 
(ISGs) include, 2’,5’-oligoadenylate synthetase 1, OAS1 
or ISG15, MCP1 Chemokine (C-X-C motif) ligand 5; 
CXCL5, (for review, see Forde and Lonergan, (2012). 
The expression of several chemokines is induced in 
endometrial tissues including chemokine ligands 10 
(CXCL10) and 9 (CXCL9); (Nagaoka et al., 2003b, 
Imakawa et al., 2006). Endometrial CXCL10 attracts 
immune cells to the caruncular regions of the 
endometrium (Nagaoka et al., 2003a), and by acting 
through the CXCL10 receptor, CXCR3, this chemokine 
regulates TE cell migration and integrin expression 
(Imakawa et al., 2006).  

Conceptus-maternal communication is vital for 
the successful establishment and maintenance of 
pregnancy, Sub-optimal communication, resulting from 
impairment of conceptus development and/or from 
abnormal uterine receptivity, contributes to a high 
incidence of embryonic mortality (see Lonergan and 
Forde, 2014, for review). Using RNA sequencing, 
Mamo et al. (2011) described the temporal changes in 
transcriptional profiles of the bovine conceptus from a 
spherical blastocyst on day 7 through days 10, 13, 16 
and 19, corresponding to the formation of an ovoid 
conceptus, initiation of elongation, maternal recognition 
of pregnancy to a filamentous conceptus at the initiation 
of implantation on day 19. Generally, genes encoding 
trophoblast kunitz domain proteins, pregnancy-
associated glycoproteins, cytoskeletal transcripts, heat 
shock proteins and calcium-binding proteins had highest 
expression levels at each of these stages of development 
(Lonergan and Forde, 2014; Mamo et al., 2011). 
Bauersachs et al. (2012) carried out a gene set 
enrichment analysis of several global transcriptomic 
datasets from days 15, 16, 17, 18 and 20 of the oestrus 
cycle or pregnancy and identified a conceptus-induced 
signature in the endometrium during the process of 
pregnancy recognition. Together with progesterone 
(P4), IFNT regulates endometrial gene expression 
necessary for the establishment of the proper uterine 
environment during the implantation period (Klein et 
al., 2006). A panel of approximately 30 genes was 
identified as expressed on day 16 as part of the early 
endometrial response to the conceptus and may 
represent early endometrial markers of a viable pre-
implantation conceptus (Bauersachs et al., 2006, 
Mansouri-Attia et al., 2009a), reviewed by Lonergan 
and Forde (Forde and Lonergan, 2012). Although most 
data demonstrates that the main molecule affecting the
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endometrium is IFNT, additional conceptus secreted 
molecules, including prostaglandins (PG; Dorniak et al., 
2012, Spencer et al., 2013) and cortisol (Dorniak et al., 
2013b), also act on the endometrium. An additional, but 
critically important action of IFNT, is the attenuation of 
endometrial PGF2a secretion, to maintain luteal 
production of P4. IFNT binds to IFNARs on the 
endometrial luminal epithelium and superficial 
glandular epithelium to inhibit transcription of the ESR1 
gene through a signalling pathway involving IFN 
regulatory factor (IRF) 2. These antiluteolytic actions of 
IFNT on the ESR1 gene prevent ESR1 expression and, 
therefore, the ability of oestrogen to induce expression 
of OXTR required for pulsatile release of luteolytic 
PGF (Spencer et al., 2007).  

There has been much interest in determining 
the differences in global transcriptome profiles in 
embryos derived following natural mating or artificial 
insemination compared to those produced using assisted 
reproductive technologies (ART), such as in vitro 
embryo production or cloning. It is now widely 
accepted that ART derived embryos have significantly 
altered gene expression patterns compared to their in 
vivo derived counterparts (Clemente et al., 2011; Gad et 
al., 2012) What is most striking, is that these embryos 
elicit diverging responses from their recipient maternal 
endometrium, even though IFNT production levels was 
found to be similar in these pregnancies (reviewed by 
Sandra et al., 2015), suggesting that other pathways 
than IFNT-mediated, are involved in recognition of 
pregnancy. Comparing endometrial transcriptomes of 
cows that were recipients of in vivo, IVF-derived or 
SCNT -embryos revealed distinct patterns of gene 
expression among the three groups (Bauersachs et al., 
2009; Mansouri-Attia et al., 2009b). Moreover, studies 
show that the supply of numerous amino acids and 
derivatives was significantly lower in the endometrium 
of SCNT conceptus-carrying females (Groebner et al., 
2011b; Dorniak et al., 2013a).  

It is likely that the class I major 
histocompatibility complex (MHC-I) also plays a role in 
embryo maternal interaction and modulation of the 
maternal immune response. The MHC, termed the 
bovine leukocyte antigen (BoLA) in cattle and the 
human leukocyte antigen (Davies et al., 2006) in 
humans, encodes a collection of immune and non-
immune related molecules (see Kelley et al., 2005, for 
review). The class I region of the MHC includes the 
classical, or class Ia genes, the non-classical (NC), class 
Ib, genes and a number of pseudogenes. Although not 
directly homologous, classical class I genes have 
common characteristics across all species, such as high 
levels of polymorphism and high expression levels; 
their main function is to discriminate between self and 
non-self by presenting antigenic peptides to cytotoxic T 
lymphocytes, thus eliciting an immune response. Non-
classical class I genes are generally non-polymorphic, 
have lower expression levels and varied functions 
(Hughes et al.,1999; Ellis, 2004). Currently there are 
circa 90 full length class I cDNA sequences validated 
and listed in the bovine MHC database 
(http://www.ebi.ac.uk/ipd/ mhc/bola). There are six or 

more classical BoLA class I genes, expressed in a 
number of different combinations, such that no more 
than three are expressed on a haplotype (Ellis et al., 
1999; Birch et al., 2008). The existence and genomic 
location on chromosome 23, of five bovine MHC-Ib 
genes (named NC1-NC5), is recorded on the database. 
Their expression has been demonstrated in early 
cleavage stage bovine embryos (Doyle et al., 2009) 
binucleate cells (Bainbridge et al., 2001) and in first and 
second trimester and term trophoblast tissues (Davies et 
al., 2006). In general, the classical class I genes are 
found to be down-regulated or modified in the 
trophoblast cell populations in many mammalian 
species (for review, see Ellis et al., 2004). MHC-I 
mRNA expression by bovine embryos is both transcript 
and embryo stage-specific (Doyle et al., 2009) and can 
be regulated by a number of cytokines including IFNG, 
IL-4, and LIF (O'Gorman et al., 2010; Al Naib et al., 
2011). Humans express three classical class I genes 
(HLA-A, -B and -C), and a number of non-classical 
genes, including HLA-G. HLA-G is expressed by 
human trophoblast (Ellis et al., 1999), which exists in 
both membrane-bound and soluble (secreted) 
alternatively spliced forms. A literature survey on the 
role of soluble HLA-G (sHLA-G) reported that sHLA-G 
secreted by early embryos may be necessary for 
implantation and could represent a good non-invasive 
marker for pregnancy rate following IVF (Fuzzi et al., 
2002; Rizzo et al., 2007). However, the association 
between sHLA-G concentration and implantation 
success is not robust (Tabiasco et al., 2009). 

We have investigated the mRNA expression 
profiles of bovine embryos as different stages of pre and 
peri -implantation development. Embryos were 
recovered from slaughtered pregnant beef-cross heifers 
at days 16, 17, 20, 24 and 34 post AI. The relative 
abundance of trophectodermal NC-MHC-I (BoLA- NC1, 
NC2, NC3 & NC4) mRNA expression was analysed 
using quantitative real time PCR. mRNA expression of 
NC BoLA sequences was detected at all stages 
investigated, with expression increasing linearly with 
embryo development (Reddy et al., 2011). In human, 
successful trophoblast invasion appears to depend upon 
the appropriate combination of fetal HLA-C expression 
by trophoblast and killer cell immunoglobulin-like 
receptors (Rouas-Freiss et al., 1997) by maternal uterine 
natural killer (NK) cells, moreover, inappropriate 
combinations could lead to poor placentation as seen in 
pre-eclampsia (Hiby et al., 2004). It appears that extra-
villous human fetal trophoblast cell HLA-G expression 
may also potentiate maternal immuno-tolerance through 
modulation of CD4+ T, CD8+ T and NK -cell activity 
(Rouas-Freiss et al., 1997; Bainbridge et al., 2000; 
Fournel et al., 2000; Mansouri-Attia et al., 2012; 
Tilburgs et al., 2015). In general, MHC class I or class 
I-like ligands bind to KIR and Ly-49 multigene family 
members. The KIRs are expressed by NK cells and 
subsets of T cells (Vilches and Parham, 2002); whereas 
leukocyte immunoglobulin-like receptors (LILR) are 
expressed by several types of leukocytes (Long, 1999). 
Binding of MHC-I ligands either inhibits or activates 
their effector functions. In cattle, inhibitory (KIR2DL or
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KIR3DL) and activating (KIR2DS and KIR3DS) 
members have been identified (Storset et al., 2003). 
Non-classical BoLA are produced in both nonsoluble 
and soluble forms, so it has been speculated that the 
soluble BoLA also bind LILR receptors on leukocytes 
in cows, which could inhibit the leukocyte (Rapacz-
Leonard et al., 2014). However, to date, their interaction 
with trophoblast MHC-I ligands has not been detailed. 
 

Maternal immune cell response to pregnancy 
 

Although studies on the involvement of the 
maternal immune system in the establishment of 
pregnancy in cattle are few in number, particularly, for 
early pregnancy, monocyte (Mo), macrophages MØ and 
dendritic cells (DCs) appear to be the key actors during 
the implantation period (Fair, 2015). Macrophage 
recruitment to the pregnant endometrium has been 
described for a wide range of mammalian species, 
including the mouse (Fest et al., 2007), human 
(Mincheva-Nilsson et al., 1994, McIntire et al., 2008), 
sheep and cattle (Tekin and Hansen, 2004; Oliveira and 
Hansen, 2009; Oliveira et al., 2010; Mansouri-Attia et 
al., 2012). Some of the roles associated with 
macrophages at this time include clearing cellular debris 
and regulating apoptosis (Straszewski-Chavez et al., 
2005), and regulation of placental lactogen 
concentrations at the fetal–maternal interface 
(Kzhyshkowska et al., 2008). However, these roles may 
be more important for mouse and human, where 
implantation is quite invasive. An additional role, which 
may be more relevant to ruminant species, is regulating 
the activation of anti-conceptus immune responses 
(Oliveira et al., 2010) in response to IFNT stimulation 
and antigenicity of the conceptus due to paternal antigen 
and classical MHC protein expression (Doyle et al., 
2009). In cattle, using immunofluorescent labeling of 
immune cell markers, we observed an initial expansion 
of Mo, MØs (CD14+-cells), and DC (CD172a–
CD11c+) populations in the endometrial stroma on day 
13 of pregnancy (Mansouri-Attia et al., 2012). At the 
same time there was a decline in the number of CD11b 
positive cells; the loss of CD11b expression is 
characteristic of monocytes acquiring a stationary 
phenotype (Mansouri-Attia et al., 2012). Which 
supports their accumulation in the endometrial stroma in 
response to the embryo. Similarly, a human and mouse -
specific role of Dendritic cells is involvement in decidua 
formation (Blois et al., 2007; Plaks et al., 2008). 
Immunofluorescent labeling of CD172a and CD11c in 
bovine endometrium sections, revealed a large 
population of immature cells within the endometrial DC 
population during early pregnancy (Mansouri-Attia et 
al., 2012). Immature DC’s have been associated with 
the initiation and maintenance of peripheral tolerance 
(Dietl et al., 2006) and their presence has been 
positively associated with the establishment of healthy 
pregnancies in women (Tirado-Gonzalez et al., 2010). 
The expansion of these populations in the maternal 
endometrium is likely to be induced by IFNT.  

The maternal immune response to pregnancy in 
humans, has long been described as a Th1/Th2 

dichotomy with an imbalance toward a Th2 type 
immune response (Wegmann, 1988; Raghupathy, 
1997). However, with more in depth transcriptomic and 
proteomic profiling, this view has been expanded, to 
take in to account the reported endometrial expression 
of Th1-type cytokines during implantation and proposed 
associated requirements for inflammatory signaling 
during the establishment of pregnancy (Lin et al., 1993; 
Chaouat, 2007). Using fluorescent labeling of 
lymphocyte subset markers on endometrial sections, we 
identified CD4+, CD8+, gamma delta T and FoxP3+ 
lymphocyte populations in both pregnant and cyclic 
cattle from day 5 to 16 of pregnancy/oestrous cycle. The 
population sizes did not appear to be temporally 
regulated during the oestrous cycle, or by the presence 
of an embryo (Oliveira et al., 2013). Although the 
population size did not alter, the gene expression profile 
of these cells was temporally modified; 
inflammatory/Th1 immune factors IFNA, LIF, IL1B, 
IL8, and IL12A were down regulated during the luteal 
phase of the oestrus cycle, while Th2 factors LIF and 
IL10 were upregulated. Our findings suggested that the 
inflammatory status of T-lymphocytes is modulated 
during the oestrous cycle, taken together with the 
similar transcriptome profiles of cyclic and pregnant 
endometrial tissue, it would appear that the default 
mechanism in the uterus is to prepare for, and expect, 
pregnancy (Forde et al., 2011). In contrast to our 
findings, Correia-Álvarez et al. (2015) reported reduced 
numbers of CD45-positive leukocytes in the 
endometrium three days after transfer of in vitro 
produced bovine day 8 blastocysts to the uterus of 
heifers, compared to those with sham transfers. 
Similarly, Groebner et al., 2011a reported fewer CD45-
positive leukocytes in the zona basalis of pregnant 
animals on day 18 of pregnancy, simultaneous with an 
increase in transcripts and elevated enzymatic activity 
of the tryptophan (Trp) -degrading enzyme indoleamine 
2, 3 dioxygenase 1 (IDO). The Authors proposed that 
the elevated enzyme activity resulted in local Trp 
ablation, which lead to the reduced the number of 
leucocytes in the zona basalis of pregnant animals on 
day 18. However, neither group identified the specific 
leukocyte subset that was regulated in their study. 
Endometrial TGFb2 expression is also down regulated 
during the ovine and bovine implantation period, but 
appears to increase specifically in the placentome at this 
time (Mansouri-Attia et al., 2012). Several roles have 
been proposed for TGFb2 during placentation: 1) 
chemoattractant for Mo recruitment to the placentation 
foci; 2) regulator of trophoblast invasion and 3) 
regulation of Mo inflammatory status (Wahl et al., 
1987; Graham and Lala, 1991).  

The final lymphocyte to address is the NK cell, 
which is an essential player in the establishment of 
pregnancy in mouse and human. Using 
immunofluorsecent labeling of CD335+ cells, we found 
these cells to be surprisingly elusive in bovine 
endometrial tissue, in cyclic animals and particularly 
during the early stages of pregnancy (Oliveira et al., 
2013). There is evidence from an vitro study suggesting 
that uterine NK cell expansion could be restricted by
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IFNT (Skopets et al., 1992). Given that in mouse and 
human, uterine NK cells are critically involved in local 
vascular remodeling and regulation of trophoblast 
invasion during implantation (Mor et al., 2011), the 
restricted NK expansion might be a contributory 
mechanism by which non-invasive implantation 
develops in cattle, see review by Bazer et al. (2009).  
 
Peripheral response of the maternal immune system 

to early pregnancy 
 

In addition to the local uterine immune 
response, extra-uterine tissues, including peripheral 
blood cells (PBL) and the corpus luteum, respond to 
conceptus secretions (Sandra et al., 2015). The systemic 
effect of the conceptus has also been investigated with 
regard to IFNT and the expression of ISG in peripheral 
blood leucocytes (PBL; Oliveira and Hansen, 
2008) and (Ott and Gifford, 2010). As observed in the 
endometrium, gene expression of ISGs (MX1, MX2, 
OAS1, ISG15) is induced in bovine PBLs (Green et al., 
2010; Pugliesi et al., 2014) by day 18. These suggest 
that PBL ISG expression could be evaluated to 
determine cow pregnancy status (Forde and Lonergan, 
2012), or to characterize the post insemination PBL 
profile of cows that maintain their pregnancies or those 
that ultimately re-cycle. 
 

Summary 
 

The role of embryo derived IFNT and the 
importance of maternal macrophage and dendritic cells 
in the establishment of pregnancy in cattle is widely 
understood. Further support for basic research in the 
area of bovine reproductive immunology is essential to 
generate new knowledge of the mechanisms involved in 
maternal – embryo immunological cross-talk. This 
information will lead to a better understanding of the 
optimal maternal immunophenotype to support early 
embryo development and implantation and facilitate the 
optimization of transition and post-partum -cow 
management to ensure this phenotype is achieved prior 
to breeding.  
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