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Abstract 
 

The emergent concepts on ovary environment, 
reproductive physiology and the development of 
pharmacology are constantly supporting the advance of 
assisted reproduction. Within the last years, the 
biotechnics related to the synchronization of follicular 
development and the manipulation of bovine estrus 
cycle have progressed rapidly and consistently. The 
combined use of timed-artificial insemination (TAI), 
superovulation (SOV), ovum pick up (OPU), in vitro 
embryo production (IVEP) and timed-embryo transfer 
(TET) has a great potential to improve reproductive 
outcomes and disseminate selected genetics, 
diminishing the interval of generations and improving 
herds genetic gain. However, several factors can 
potentially affect the efficiency of these procedures. The 
knowledge of the particularities of the genetic groups, 
follicular growth manipulation, follicular population 
predictors, and metabolic and environmental aspects 
that interfere with ovarian environment and, 
consequently, oocyte quantity and quality is crucial to 
optimize the reproductive programs. This review aims 
to elucidate some factors that affect the ovarian 
environment and must be well known in order to 
improve the efficiency of reproduction in cattle. 
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Introduction 
 
The increasing knowledge on bovine 

physiology of the estrous cycle enabled the tight control 
of follicular growing phases using pharmacological 
strategies, facilitating the reproductive management and 
supporting the development of biotechnologies of 
reproduction (Baruselli et al., 2004, 2012; Lamb et al., 
2010). The strategic reproductive management associate 
with the use of biotechniques of reproduction can be 
potentially used to disseminate animals with high 
genetic merit efficiently. Reproductive tools such as 
timed-artificial insemination (TAI), superovulation 
(SOV) of selected donor, in vivo embryo production 
(IVEP), and timed-embryo transfer (TET) had a 
dramatic growth within the last years, accelerating the 
selection, multiplication and dissemination of animals 
with superior genetics e high potential for beef and milk 
production (Hansen, 2014).  

The success of reproductive biotechnologies 
application, however, is greatly dependent on individual 

ovarian characteristics (Wise, 1987; Tan and Lu, 1990; 
Kastrop et al., 1991; Pavlok et al., 1992; Lonergan et 
al., 1994; Gandolfi et al., 1998; Guerreiro et al., 2014; 
Batista et al., 2016), genetic particularities (Sartori et al., 
2001, 2010; Sartorelli et al., 2005; Beg and Ginther, 
2006; Gimenes et al., 2008, 2011) nutritional and 
metabolic status (Wiltbank et al., 2006; Sales et al., 2015; 
Baruselli et al., 2016; Ferreira et al., 2016b), and 
environmental factors (Al-Katanani et al., 2002; Torres-
Júnior et al., 2008; Ferreira et al., 2011, 2013, 2016a) that 
may influence the number and quality of the oocytes. 

In this context, the present review aims to 
discuss some key points related to genetics, breed, antral 
follicle populations, manipulation of ovarian follicular 
growth, metabolic status (insulin resistance) and 
environmental factors (heat stress) associated with 
oocyte and embryo quality. 
 

Physiological factors that influence ovarian 
characteristics 

 
Influence of genetic group on ovarian characteristics 

 
Several physiological differences between Bos 

indicus and Bos taurus cattle related to follicular 
dynamics have been previously reported. The 
understanding of these differences has been crucial in 
developing reproductive strategies specific for each 
genetic group. The Bos indicus cattle are the 
predominant breeds raised in tropical regions. However, 
because Bos indicus cattle have subtle differences in 
their reproductive behavior compared with Bos taurus 
breeds (Bó et al., 2003; Baruselli et al., 2007; Sartori et 
al., 2010), one cannot assume that the physiological 
parameters observed in Bos taurus would be the same as 
in Bos indicus cattle. 

In Bos indicus, follicle deviation occurred 2.5 
to 2.6 days after ovulation (Sartorelli et al., 2005; 
Gimenes et al., 2008; respectively), while in Bos taurus, 
follicle deviation occurred 2.8 days after wave 
emergence (Ginther et al., 1996), which means close 
than one day latter than for Bos indicus. The size of the 
dominant follicle at deviation is smaller in Bos indicus 
(6.0 mm; Sartorelli et al., 2005; Gimenes et al., 2008) 
than Bos taurus cattle (8.5 mm; Ginther et al., 1996). The 
acquisition of ovulatory capacity of the dominant follicle, 
measured by the ovulation after LH challenge, occurs at a 
smaller diameter in Bos indicus (7 to 8.4 mm; Gimenes et 
al., 2008) than Bos taurus cattle (10 mm; Sartori et al., 
2001). The maximum diameters of the dominant follicle 
(10-12 mm vs. 14-20 mm) and the CL (17-21 mm vs.
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20-30 mm) are also smaller in Bos indicus than in Bos 
taurus cattle (reviewed by Bó et al., 2003). Regarding 
the estrous behavior, Bos indicus breeds exhibit estrus 
of shorter duration compared to Bos taurus; (Figueiredo 
et al., 1997; Bó et al., 2003) or with high producing 
dairy cows (milk production is inversely proportional to 
estrus duration; Lopez et al., 2004; Wiltbank et al., 
2006). 

These differences have important practical 
implications when setting protocols for TAI and TET. 
The selection of embryo recipients may also be 
influenced by physiological differences between the 
genetic groups. For example, because the CL is more 
difficult to palpate (smaller) in Bos indicus cattle, 
recipients suitable to receive an embryo may be 
rejected on CL size evaluation if the particularities of 
breed are unknown. Previous studies have also shown 
that the P4 content of the CL and serum P4 

concentrations were lower in Bos indicus than in Bos 
taurus cattle (Segerson et al., 1984). Therefore, 
conception rates relative to P4 levels in tropical 
countries, primarily involving Bos indicus recipients 
on pasture, may be quite different than Bos taurus 
females maintained in cold-temperate environments 
with more adequate nutrition. 

It has also been reported that IVEP is more 
efficient in Bos indicus breeds than in Bos taurus breeds 
(Pontes et al., 2010; Guerreiro et al., 2014). The greater 
population of antral follicles found in Bos indicus cattle 
would appear to result in a greater number of suitable 
oocytes for in vitro culture (Batista et al., 2014). In this 
context, Bos indicus (Nelore) heifers are reported to have 
greater number of visualized follicles and to produce 
greater number of total oocytes per OPU session, 
cultured COC and blastocyst rates than Bos taurus 
(Holstein) heifers (Gimenes et al., 2015; Table 1). 

 
Table 1. Effect of genetic group on oocyte recovery and quality, and developmental competence of Bos indicus 
(Nelore) and Bos taurus (Holstein) heifers.  

 Genetic group 

 Nelore 
(n = 9) 

Holstein 
(n = 9) 

Number of replicates 6 6 
Number of OPU sessions 54 54 
Oocyte recovery and quality   

Visualized follicles 41.0 ± 2.1a 22.1 ± 1.3b 
Total oocytes 37.1 ± 2.6a 15.4 ± 1.2b 
Recovery rate (%) 82.3a 66.8b 
Oocytes submitted to IVC 25.6 ± 1.8a 9.1 ± 0.9b 

Developmental competence   
Cleaved structures 21.1 ± 1.6a 5.2 ± 0.5b 

Cleavage rate (%) 82.6a 59.9b 
Blastocysts 7 days after IVF 7.3 ± 0.9a 1.1 ± 0.2b 
Blastocyst rate (%) 28.3a 14.1b 

a,bP < 0.05. Adapted from Gimenes et al. (2015). 
 
Influence of Anti-Müllerian hormone on ovarian 
characteristics 

 
The success of SOV and OPU-IVEP is greatly 

dependent on individual ovarian characteristics that may 
influence the number and quality of the oocytes that are 
retrieved (Wise, 1987; Tan and Lu, 1990; Kastrop et al., 
1991; Pavlok et al., 1992; Lonergan et al., 1994; 
Gandolfi et al., 1998). It is known, for example, that the 
number of antral follicles in the early follicular phase 
directly correlates with ovarian reserve (Frattarelli et al., 
2000). Indeed, the antral follicular population (AFP) 
directly represents the follicle cohort in the ovaries, 
which is associated with the number of oocytes 
retrieved for IVEP.  

A large variability of AFP is reported among 
different cows, however AFP count is highly repeatable 
within animal (Burns et al., 2005; Ireland et al., 2007), 
and anti-Müllerian hormone (AMH) can be considered a 
reliable endocrine marker of ovarian reserve (Ireland et 
al., 2007, 2008; Monniaux et al., 2012). AMH is a 
dimeric glycoprotein member of the TGFβ superfamily 
of growth factors synthesized from granulosa cells of 
preantral and small antral follicles (growing follicles up 

to the antral stage or to a diameter of approximately 6 
mm) and represents the indirect activity of the follicular 
pool (Cate et al., 1986; Grootegoed et al., 1994; 
Durlinger et al., 1999; Weenen et al., 2004). In cattle, 
circulating AMH concentration can help veterinarians to 
predict AFP in ovaries (Ireland et al., 2008; Rico et al., 
2009; Batista et al., 2014), response to SOV treatments 
(Rico et al., 2009; Monniaux et al., 2010a, b; Souza et 
al., 2015), and more recently as a marker to predict 
IVEP performance of Bos taurus (Guerreiro et al., 2014; 
Gamarra et al., 2015; Vernunft et al., 2015) and Bos 
indicus breeds (Guerreiro et al., 2014).  

Aiming to determine the relation between 
AMH and AFP in different genetic groups, our group 
recently conducted a sequence of studies. In the first 
study (Baldrighi et al., 2014), despite the high 
variability in AFP between individuals within each 
genetic group, the AFP count was greater in Gir (Bos 
indicus) than in Holstein (Bos taurus) and Murrah 
(Bubalus bubalis) heifers (P = 0.01; Fig. 1). Similarly, 
AMH concentration was lower (P < 0.01) for Holstein 
and Murrah heifers than for Gir heifers. For the three 
genetic groups studied, a positive relationship between 
AFP and AMH concentration was detected.  
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Figure 1. Number of antral follicle population (AFP) and plasma anti-Müllerian hormone (AMH) concentration in 
Murrah (Bubalus bubalis; n = 13), Holstein (Bos taurus; n = 15) and Gir (Bos indicus; n = 10) heifers. Data are 
shown as the means ± SEM. Different letters within columns of the same color are different (AFP: a≠b; P = 0.01 and 
AMH concentration: x≠y; P < 0.001). Adapted from Baldrighi et al. (2014). 
 

Similarly, in the second study (Batista et al., 
2014), the AFP (P < 0.05) and the AMH concentration 
(P < 0.0001) were higher in Nelore (Bos indicus) than 
in Holstein (Bos taurus) heifers, and they were 
correlated. Furthermore, the number of ovarian 
follicles observed in all evaluation periods (-120, -60 
days and 0 days) was correlated with plasma AMH 
concentrations in both Bos taurus (Holstein) and Bos 

indicus (Nelore) heifers (Fig. 2). These results suggest 
that AMH could be a possible long-term endocrine 
marker of ovarian activity. Therefore, a single blood 
sample taken at a random stage of the oestrous cycle to 
measure serum AMH concentration could be 
considered a reliable phenotypic marker to predict the 
relative number of follicles, regardless of genetic 
group. 

 

 
Figure 2. Relationship between the numbers of antral follicles counted 120 (T-120) or 60 (T-60) days previous or at 
(T0) AMH dosage, and plasma AMH concentration in Holstein (n = 16; A) and Nelore (n = 16; B) heifers. Adapted 
from Batista et al. (2014). 
 

The third study was carried out with the same 
genetic groups. Corroborating the aforementioned findings, 
plasma AMH in Bos indicus (Nelore) and Bos taurus 
(Holstein) heifers had a positive correlation with the 

number of follicles aspirated, COCs retrieved, COCs 
cultured, and embryos produced per OPU session (Fig. 3). 
However, cleavage and blastocyst rates had no correlation 
with circulating AMH (Fig. 3; Guerreiro et al., 2014). 
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Figure 3. Correlation between plasma anti-Müllerian hormone (AMH) concentrations and variables related to ovum 
pick-up and in vitro embryo production in Bos indicus (Nelore; superior figure) and Bos taurus (Holstein; inferior 
figure) donors. Relationship between plasma AMH concentration and the number of follicles aspirated (A), COCs 
retrieved (B), blastocysts produced (C), COC culture rate (%, D) and blastocyst rate (%, E). Adapted from Guerreiro 
et al. (2014). 
 

Because genomic information allows producers 
to identify genetic merit of their animals at premature 
ages, we have recently investigated the possibility of 
producing embryos from oocytes of young female calves 
that were only 2-4 months old. We have found greater 
plasma AMH concentrations in calves compared to cycling 
heifers in both genetic groups, Bos indicus and Bos taurus 
(Fig. 4; Batista et al., 2016). Indeed, it was previously 
shown that AMH concentrations fall in parallel to the 
number of ovarian follicles as rodents (Kevenaar et al., 
2006) and women (Piltonen et al., 2005) age. 

Furthermore, a positive correlation was observed 
between plasma AMH concentration and the number of 
follicles (P < 0.0001), retrieved COCs (P < 0.0001), 
COCs cultured (P < 0.0001), cleaved COCs (P < 0.0001 
and P = 0.001), and produced blastocysts (P = 0.0003 and 
P = 0.009) from Bos indicus (Nelore) and Bos taurus 
(Holstein; Fig. 5) donor calves. However, there was no 
correlation between circulating AMH levels and 
cleavage rate (P = 0.24 and P = 0.36), COC culture rate 
(P = 0.28 and P = 0.07), or blastocyst rate (P = 0.52 and 
P = 0.08; Batista et al., 2016). 
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Figure 4. AMH plasma concentration (ng/ml) in calves (aging 2 to 4 months, Holstein: n = 24 and Nelore: n = 30) 
and cycling heifers (Holstein: n = 10 and Nelore: n = 12). Batista et al. (2016). 
 

 

 
Figure 5. Correlations between plasma anti-Müllerian hormone (AMH) concentrations, the number of follicles and 
variables related to laparoscopic ovum pickup, and in vitro embryo production in Bos indicus (n = 29; superior 
figure) and Bos taurus (n = 19; inferior figure) donor calves. Relationships between the number of follicles (A), 
cumulus-oocyte complexes retrieved (B), cultured (C), and cleavage (D), blastocysts produced (E), and AMH 
concentration (ng/ml). Batista et al. (2016).  
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Metabolic and nutritional factors that influence 
ovarian characteristics 

 
The nutritional and metabolic status can 

interfere with follicular growth patterns, secretion of 
reproductive hormones, and oocyte quality in cattle 
(Leroy et al., 2008; Ashworth et al., 2009; Batista et al., 
2013; Sales et al., 2015; Baruselli et al., 2016; Ferreira 
et al., 2016a). Thus, metabolic imbalances may cause 
systemic alterations that can compromise the success of 
reproductive biotechnologies, such as TAI, SOV and 
OPU-IVEP (Webb et al., 2004; Adamiak et al., 2005).  

Maternal health and nutritional status during 
gestation have been reported as important factors that 
interfere on the number of primordial follicles formed 
during fetal life (Ireland et al., 2011; Evans et al., 
2012). In this context, the influence of mother’s 
undernutrition on ovarian status of female offspring was 
previously investigated (Mossa et al., 2009). Heifers 
received diets for maintenance or food restriction (0.6 of 
energetic needs for maintenance) right before 
conception until 110 days of pregnancy. The AFP and 
concentration of AMH of the female calves born from 
undernourished cows were on average 60% lower than 
from calves born from cows kept under maintenance 
diets, when they were 7, 18 and 35 weeks of age. 
Moreover, studies indicate that disruptions on mother’s 
health during gestation may reduce the ovarian 
follicular reserve. In this basis, cows with high milk 
somatic cell count, indicating mammary gland infection, 
gave birth to female calves with almost 50% less AMH 

concentration than calves born from healthy cows (low 
somatic cell count; 0.01 ± 0.08 vs. 0.13 ± 0.03 ng/ml; P 
< 0.05; Ireland et al., 2011; Evans et al., 2012). 

On the other hand, the overfeeding can also have 
negative aspects on reproduction. A common aspect of 
commercial SOV and OPU-IVEP programs is the use of 
non-lactating or late lactation cows as oocyte and embryo 
donors. In these animal categories, the negative effects of 
overfeeding (excessive energy intake) can compromise in 
vitro oocyte developmental competence, especially in 
over-conditioned (high body condition score) females 
(Adamiak et al., 2005). The mechanisms that mediate 
these negative effects on oocyte competence may be 
related to endocrine alterations, such as hyperinsulinemia, 
peripheral resistance of insulin, and increased glucose 
and IGF-I, which may interfere with glucose transport in 
embryo cells and increased apoptosis.  

Our research group conducted a study to 
evaluate the impact of different energy intakes on 
metabolic profiles and oocyte quality of the non-
lactating Gir (Bos indicus) cows submitted to successive 
OPU sessions (Sales et al., 2015). Diets were 
formulated to achieve maintenance (M) or 1.7% of 
maintenance (1.7M) for non-lactating cows. Following 
60 days of high energy feeding, cows had reduced in 
vitro oocyte competence (Fig. 6). Cows fed high-energy 
diets had greater glucose and insulin concentrations and 
a greater level of insulin resistance as determined by the 
glucose tolerance test. Furthermore, cows receiving 
high-energy diet had lower abundance of transcripts for 
GLUT1, IGF1R, IGF2R and HSP70.1 genes in oocytes. 
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Figure 6. In vitro embryo production in non-lactating cows (n = 14) fed diets to meet 100 or 170% of energy of 
maintenance and submitted to nine OPU session at 14 day intervals. Adapted from Sales et al. (2015). 
 
 

Insulin has an important role in cellular 
metabolism, however, in excess it may interfere with 
various metabolic and reproductive processes in dairy 
cows (De Koster and Opsomer, 2013). During early 
lactation, low circulating insulin concentrations have 
been associated with impaired fertility by delaying 
resumption of cyclicity (Gong et al., 2002). Although 

greater concentrations of insulin are important to restore 
ovarian cyclicity, it has been shown in heifers that they 
may also compromise oocyte quality (Adamiak et al., 
2005) and, therefore, fertility. In that regard, excessive 
insulin may reduce oocyte quality in heifers (Adamiak 
et al., 2005) and IVEP and gene expression linked to 
cellular metabolism in nonlactating Bos indicus dairy



 Baruselli et al. Physiologic, metabolic and environmental effects on oocyte quality and fertility. 
 

54 Anim. Reprod., v.14, n.1, p.48-60, Jan./Mar. 2017 

cows (Sales, 2011). In the latter study, the negative 
association of excessive energy intake and increased 
insulin concentrations on IVEP occurred only after 60 
days. Thus, prolonged exposure to a high-energy diet 
was necessary to compromise oocyte quality. On the 
basis of “Britt’s theory” (i.e., folliculogenesis takes at 
least 60-80 days until an ovulatory follicle stage; Britt, 
1992), adverse conditions such as excessive energy 
balance leading to insulin resistance status can affect 
folliculogenesis leading to subsequent issues of oocyte 
competence at the time of ovulation. Therefore, 
negative effects on oocyte quality and fertility might not 
be apparent at the onset of insulin resistance. 

In another study, early-lactation (110.5 ± 20.8 
DIM; n = 70) and late-lactation (425.6 ± 21.0 DIM; n = 
67) Holstein cows were subjected to OPU to evaluate 
oocyte quality and IVEP (Table 2; Ferreira et al., 2011 
and reviewed by Baruselli et al., 2016). In addition to 
increased number of days not pregnant, late-lactation 
cows had lower milk yield, greater number of previous 
inseminations and greater BCS than early-lactation cows 
(Table 2). Regarding OPU-IVEP, late-lactation cows had 
greater numbers of recovered and viable oocytes 
compared to early-lactation cows. However, late-lactation 
cows had decreased rates of blastocyst (P = 0.0005). In 
addition to fewer embryos produced, late-lactation cows 
had greater peripheral insulin resistance than early-
lactation cows, based on homeostasis model assessment 
of insulin resistance (HOMA-IR; Table 2; Matthews et 
al., 1985; Hackbart et al., 2013). The HOMA-IR was 
calculated according to a formula presented in the 
previous studies (Matthews et al., 1985; Hackbart et al., 
2013): [basal insulin (mIU/ml) x basal glucose 
(mmol/L)]/22.5. The major purpose of the HOMA-IR is 
to predict insulin resistance of peripheral tissues based on 
a single blood sample after an overnight fast. 

Moreover, late-lactation cows had lower serum 
concentrations of both NEFA (P = 0.07) and BHBA (P 
= 0.01), although there were greater serum 
concentrations of glucose (P = 0.02) and insulin (P = 
0.001) and a greater insulin-glucose ratio (P = 0.001) 
compared to early-lactation cows. Stage of lactation did 
not alter other serum metabolites evaluated (Table 2; 
Ferreira et al., 2016b). Therefore, late-lactation cows 
from the present study might have been consuming 
energy in excess of requirements. Supporting the 
previous data, lactating cows consuming excessive 
energy intake experienced increased insulin resistance 
and reduced blastocyst rate compared to cows 
consuming only adequate amounts of energy (Leiva et 
al., 2015). Both relative and absolute numbers of copies 
of mitochondrial DNA (mtDNA) were reduced in 
oocytes retrieved from late-lactation cows (Table 2; 
Ferreira et al., 2016a, b), suggesting a disruption of 
oocyte quality (Ferreira et al., 2016a). In addition, 
expressions of mitochondrial-related genes (MTCO1, 
POLG, POLG2, PPARG, TFAM) were increased in 
late-lactation cows, suggesting the activation of 
compensatory mechanisms in response to mitochondrial 
dysfunction (reduced number of copies of mtDNA) 
aiming to improve the generation of energy (ATP) 

required during early embryonic development (Ferreira 
et al., 2016a). Furthermore, there was a greater ratio of 
BAX/BCL2 in late-lactation cows, indicating an 
apoptotic phenotype of the oocytes from this category 
(Ferreira et al., 2016a; Table 2). Overall, on the basis of 
the available data, we inferred there was a possible 
association between reduced oocyte quality and insulin 
resistance status, mostly manifested in late-lactation 
cows fed a diet with excessive energy. 

 
Environmental factors that influence ovarian 

characteristics 
 
Mainly in tropical regions, the poor IVEP 

yields in Bos taurus cattle can be partly attributed to the 
heat stress (Al-Katanani and Hansen, 2002; Al-Katanani 
et al., 2002; Ferreira et al., 2011, 2016a). However, 
previously reports have shown that heat stress also can 
exert a deleterious effect on ovarian follicular dynamics 
and oocyte competence in Bos indicus cattle (Torres-
Júnior et al., 2008). 

A previous seasonal experiment demonstrated 
that once the pool of ovarian oocytes is damaged by 
heat stress, two or three estrous cycles are required 
(after the end of heat stress) to restore the follicular pool 
and oocyte quality (Roth et al., 2001). However, the 
study with Bos indicus cows (Torres-Júnior et al., 2008) 
showed a carry-over effect of heat stress on blastocyst 
production up to 105 days after the end of the heat stress 
(Fig. 7). Therefore, it seems that follicles and oocytes 
are damaged by heat stress during early stages of 
folliculogenesis, with a delayed deleterious effect on 
ovarian function. Nevertheless, Bos indicus breeds have 
been shown to be more resistant to tropical conditions 
(i.e. elevated temperature and humidity) than breeds that 
evolved in temperate climates (i.e, Bos taurus, as 
Holstein). Essentially, the adaptation of certain breeds 
to elevated heat and humidity is related to their ability to 
thermoregulate their body temperature (Bennett et al., 
1985; Hammond et al., 1996; Gaughan et al., 1999). 

Heat stress also has a deleterious effect on 
superovulatory response in Holstein donors. In a recent 
retrospective analysis, (Vieira et al., 2014) reported a 
negative effect of the warm season in Brazil on the 
number of IVEP (2.8 ± 0.3 vs. 4.4 ± 0.4; P = 0.03) and 
percentage of embryos classified as grade I and II (21.4 
vs. 32.8%, P < 0.0001) in Holstein donors. In addition, 
Ferreira et al. (2011) reported decreased COC numbers 
in Holstein cows when OPU was performed during the 
summer months. Yet, when blastocyst rates were 
evaluated, an interaction between group and season 
indicated that the effect of season was dependent on 
animal category. Heat stress decreased blastocyst rate 
for heifers, peak lactation and repeat breeder cows, 
however this drop compared to winter was more intense 
for repeat breeders (Fig. 8; Ferreira et al., 2011). 
Regardless of season, blastocyst rates were lower in 
repeat breeder cow than in heifers. Additionally, repeat 
breeder blastocyst quality was compromised in 
comparison to heifers and cows at peak lactation during 
the summer (Ferreira et al., 2011). 
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Table 2. Ovum pick up, in vitro embryo production and metabolic profile of high production Holstein cows during 
early or late in lactation.  

 Phase of lactation P value  Early Late 
Ovum pick up, in vitro embryo production and metabolic profile 

--------------------------------------- General Characteristics --------------------------------------- 
No. of animals 70 67  
DIM, days 110.5 ± 20.8 425.6 ± 21.0 - 
Milk production, Kg/day 34.3 ± 1.2 23.4 ± 1.2 < 0.0001 
No. of insemination 0.7 ± 0.2 7.0 ± 0.2 < 0.0001 
No. of lactation 2.4 ± 0.1 1.9 ± 0.2 0.05 
BCS (1 to 5 scale) 2.79 ± 0.06 3.15 ± 0.07 < 0.0001 

--------------------------------------------- Ovum pick up ------------------------------------------- 
No. of follicles 14.8 ± 2.4 22.7 ± 2.4 0.0016 
Recovery rate, % 46.4 ± 4.4 53.8 ± 4.5 0.10 
No. of oocytes 7.3 ± 2.0 14.3 ± 2.0 0.0004 
No. of viable oocytes 4.6 ± 1.6 9.7 ± 1.6 0.0010 

------------------------------------- In vitro embryo production ----------------------------------- 
No. of cleaved oocytes (D3) 4.7 ± 0.6 3.9 ± 0.6 0.10 
Cleavage rate, % 48.0 ± 0.1 41.4 ± 0.1 0.08 
No. of Blastocyst (D7) 2.2 ± 0.4 1.4 ± 0.3 0.06 
Blastocyst rate, % 23.0 ± 0.1 13.3 ± 0.1 0.0005 

----------------------------------------- Metabolites profile ------------------------------------------ 
Total Protein, g/dL 7.9 ± 0.1 7.8 ± 0.1 0.16 
Albumin, g/dL 3.2 ± 0.0 3.30 ± 0.0 0.78 
Globulin, g/dL 4.6 ± 0.1 4.47 ± 0.1 0.12 
Albumin/Globulin ratio 0.71 ± 0.0 0.78 ± 0.0 0.14 
Urea, mg/dL 36.0 ± 1.6 30.8 ± 1.1 0.18 
Creatinine, mg/dL 0.9 ± 0.0 1.0 ± 0.0 0.55 
CK, U/L 69.7 ± 5.3 80.1 ± 11.1 0.29 
AST, U/L 73.4 ± 3.7 64.3 ± 2.6 0.40 
GGT, U/L 22.1 ± 1.6 28.2 ± 4.9 0.30 
Triglyceride, mg/dL  15.3 ± 0.4 17.1 ± 0.7 0.10 
Cholesterol, mg/dL 156.1 ± 5.4 149.5 ± 5.1 0.98 
HDL, mg/dL 51.1 ± 2.1 47.6 ± 1.9 0.52 
LDL, mg/dL 102.0 ± 4.4 98.5 ± 4.5 0.89 
VLDL, mg/dL 3.1 ± 0.1 3.4 ± 0.1 0.25 
NEFA, mol/L 0.45 ± 0.03 0.35 ± 0.02 0.07 
BHB mg/dL 5.11 ± 0.22 4.73 ± 0.18 0.01 
Glucose, mg/dL 56.4 ± 0.8 62.0 ± 0.9 0.02 
Insulin (µIU/mL) 8.4 ± 1.2 21.4 ± 3.0 0.001 
Ratio of Insulin and Glucose 0.15 ± 0.02 0.34 ± 0.05 0.001 
HOMA-IR 1.23 ±0.18 3.36 ±0.51 0.0001 

Oocyte genes expression 
------------------------------------------- mtDNA amount -------------------------------------------- 

MtDNA 1.0 ± 0.26 0.5 ± 0.13 0.02 
----------------------------------------- Mitochondrial genes ----------------------------------------- 

MTCO1 1.0 ± 0.24 2.7 ± 0.48 0.001 
NRF1 1.0 ± 0.20 1.2 ± 0.17 0.19 
POLG 1.0 ± 0.33 2.5 ± 0.62 0.008 
POLG2 1.0 ± 0.28 1.5 ± 0.26 0.06 
PPARG 1.0 ± 0.20 1.8 ± 0.30 0.02 
TFAM 1.0 ± 0.20 3.9 ± 1.35 0.003 

---------------------------------------------- Apoptotic genes ----------------------------------------- 
BAX 1.0 ± 0.24 1.3 ± 0.18 0.18 
BCL2 1.0 ± 0.22 1.2 ± 0.27 0.63 
BAX/BCL2 1.0 ± 0.20 2.2 ± 0.41 0.001 
ITM2B 1.0 ± 0.26 2.1 ± 0.51 0.02 

------------------------------------------ Maturation genes ------------------------------------------- 
BMP15 1.0 ± 0.15 0.8 ± 0.09 0.34 
FGF8 1.0 ± 0.24 1.0 ± 0.15 0.73 
FGF10 1.0 ± 0.38 0.5 ± 0.11 0.19 
FGF16 1.0 ± 0.20 0.8 ± 0.12 0.72 
GDF9 1.0 ± 0.22 0.9 ± 0.14 0.89 

Adapted from Ferreira et al. (2016a, b). 
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Figure 7. Percentage of blastocysts and regression equation’s adjusted lines of oocytes recovered from Gyr (Bos 
indicus) cows exposed to thermoneutral (C) or heat-stress (HS) treatments. Adapted from Torres-Júnior et al. 
(2008). 
 
 

 
Figure 8. Blastocyst rate 7 d post-in vitro insemination of Holstein cattle oocytes of different groups during summer 
and winter [heifers (H; n = 150 and 244, respectively), high-producing cows in peak lactation (PL; n = 103 and 191, 
respectively), and repeat-breeder cows (RB; n = 177 and 413, respectively)]. Interaction season-group (P < 0.0001); 
mean (± SEM) values within season (a ≠ b ≠ c) and within group (*) differ (P < 0.0001). Adapted from Ferreira et 
al. (2011). 
 
 

In a subsequent study, the same patter 
previously described for blastocyst rate (Ferreira et al., 
2011) was observed for pregnancy per AI (P/AI) after 
TAI of females of the same three categories during the 
summer and winter (Fig. 9; Ferreira et al., 2013). As 
expected, heat stress reduced P/AI of all categories of 
Holstein females studied (heifers, peak lactation and 

repeat breeder cows), probably because of heat-disruption 
of oocyte quality (Al-Katanani et al., 2002; Torres-Júnior 
et al., 2008; Ferreira et al., 2011, 2016a, b). 

Thus, heat stress has a deleterious effect on 
oocyte quality of both Bos indicus and Bos taurus dairy 
females, potentially decreasing the results of TAI, SOV 
and OPU-IVEP procedures. 
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Figure 9. Pregnancy per artificial insemination (AI) of Holstein cattle of different categories during summer and 
winter (heifers = H, high-producing cows in peak lactation = PL and repeat-breeder cows = RB). Adapted from 
Ferreira et al. (2013). 
 

Conclusion 
 
The success of the application of reproductive 

biotechniques is closely dependent on individual 
ovarian characteristics, genetic particularities, 
nutritional and metabolic status, and environmental 
factors that may influence the number and quality of the 
oocytes and embryos. Therefore, factors related to 
breed, follicular count (AMH), heat stress and nutrition 
should be considered when applying TAI, SOV, OPU-
IVEP and TET in the field. Adequate control of 
environmental and nutritional conditions should be one 
of the requisites to be accomplished before implementing 
any reproduction biotechnology. On the other hand, the 
knowledge of physiological differences between Bos 
indicus and Bos taurus cattle is crucial to determine he 
correct strategies to manipulate follicular wave dynamics 
for TAI, SOV, OPU-IVEP and TET programs. 
Additionally, the selection of oocyte and embryo donors 
with greater follicular population can optimize the 
efficiency of embryo production techniques. Once these 
biotechnologies can be efficiently applied on a large 
scale in the field, significant enhancements in livestock 
genetic gain can be accomplished with great 
productivity and economic return for the activity. 
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