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Abstract 
 

The process of chromatin configuration 
remodeling within the mammalian oocyte nucleus or 
germinal vesicle (GV), which occurs towards the end of 
its differentiation phase before meiotic resumption, has 
received much attention and has been studied in several 
mammals. This review is aimed to highlight the 
relationship between changes in chromatin 
configurations and to both functional and structural 
modifications occurring in the oocyte nuclear 
compartment. During the extensive phase of meiotic 
arrest at the diplotene stage, the chromatin enclosed 
within the GV is subjected to several levels of 
regulation. Morphologically, the chromosomes lose 
their individuality and form a loose chromatin mass. 
Then the decondensed chromatin undergoes profound 
rearrangements during the final stages of oocyte growth 
in tight association with the acquisition of meiotic and 
developmental competence. Functionally, the discrete 
stages of chromatin condensation are characterized by 
different level of transcriptional activity, DNA 
methylation and covalent histone modifications. 
Interestingly, the program of chromatin rearrangement is 
not completely intrinsic to the oocyte, but follicular cells 
exert their regulatory actions through gap junction 
mediated communications and intracellular messenger 
dependent mechanism(s). With this in mind and since 
oocyte growth mostly relies on the bidirectional crosstalk 
with the follicular cells, experimental manipulation of 
large-scale chromatin configuration is discussed. Besides 
providing tools to determine the key cellular pathways 
involved in genome-wide chromatin modifications, the 
present findings will aid to the refinement of 
physiological culture systems that can have important 
implications in treating human infertility as well as 
managing breeding schemes in animal husbandry. 
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Introduction 
 

The chromatin organization and architecture is 
a characteristic element of the process of oocyte 
differentiation in mammals (Luciano and Lodde, 2013). 
Oocyte development is characterized by impressive 

changes in chromatin structure and function within the 
nucleus, namely the germinal vesicle (GV). These 
changes are crucial to confer the oocyte with meiotic 
and developmental competences and they occur along 
the process of folliculogenesis, when gamete and 
somatic cells communicate through junctional and 
paracrine mediated mechanisms (Albertini et al., 2003).  

Dynamic changes in GV oocyte chromatin 
configuration have been described in mouse 
(Wickramasinghe et al., 1991; Debey et al., 1993; 
Zuccotti et al., 1995), rat (Mandl, 1962), human 
(Combelles et al., 2003; Miyara et al., 2003), monkey 
(Schramm et al., 1993), horse (Hinrichs and Williams, 
1997; Hinrichs and Schmidt 2000; Franciosi et al., 
2012), pig (Bui et al., 2007; Dieci et al., 2013), cattle 
(Fuhrer et al., 1989; Chohan and Hunter, 2003; Liu et 
al., 2006; Lodde et al., 2007), buffalo (Yousaf and 
Chohan, 2003), goat (Sui et al., 2005), sheep (Russo et 
al., 2007), dog (Jin et al., 2006; Lee et al., 2008; 
Reynaud et al., 2009), ferret (Sun et al., 2009), rabbit 
(Wang et al., 2009) and cat (Comizzoli et al., 2011). 
Although different patterns of chromatin organization 
have been defined in mammals, sometimes the 
nomenclature can be confusing, since it is not univocal 
in part due to some species-specificity. For example, 
Surrounded Nucleolus (SN) configuration - where 
chromatin forms a ring around the nucleolus - has been 
described in the mouse as well as and in other mammals 
(monkey, pig, rat and human) while this configuration 
was not evidenced in the horse oocyte where ‘fibrillar’, 
‘intermediate’ and ‘condensed’ configurations were 
documented (Franciosi et al., 2012), or in the bovine, 
where the highest degree of chromatin compaction is 
found in GV3 oocytes. Moreover, very often, different 
acronyms were used within the same species by different 
authors and this made data interpretation puzzling. 

Nevertheless, despite the species-specific 
patterning, the process of large-scale chromatin 
configuration changes seems to be a common process in 
mammals. In fact, what is clear is that the chromatin 
contained in the GV achieves a high degree of 
condensation and compaction passing through 
intermediate configurations, before the resumption of 
meiosis. Incidentally, it is worth stating that the GV3 or 
the SN configurations have been first described by 
Blackman in early 1900 in spermatocytes of millipedes



 Luciano et al. Chromatin remodeling and oocyte development. 
 

142 Anim. Reprod., v.11, n.3, p.141-149, Jul./Sept. 2014 

named the ‘karyosphere’ (Blackman, 1903). The 
karyosphere “represents a transformation of meiotic 
chromosomes often occurring just prior to the 
completion of meiotic division”, and a similar structure, 
named karyosome, exists in Drosophila (King, 1970) as 
well as in other phylogenetically distant organisms 
studied so far, suggesting a well-conserved process 
between species during phylogeny (Gruzova and 
Parfenov, 1993). 
 

Significance of large-scale chromatin  
configuration changes 

 
Differences in chromatin configuration do not 

only refer to morphological modifications but also to its 
functionality (De La Fuente, 2006; Luciano and Lodde, 
2013). Several studies indicated that there is a 
relationship between chromatin configurations, 
transcriptional activity, epigenetic signature, 
characteristics of the ooplasm and oocyte competence 
and altogether these features are strictly associated one 
to each other. Importantly, a direct relationship between 
oocyte chromatin configuration and embryonic 
developmental competence has been ascertained in 
mouse (Zuccotti et al., 1998, 2002) and in cow (Lodde 
et al., 2007; Luciano et al., 2011). 

In growing mouse oocytes chromatin is 
initially decondensed in a configuration termed Non-
Surrounded Nucleolus (NSN; Mattson and Albertini 
1990; Debey et al., 1993; Zuccotti et al., 1995). With 
the subsequent growth and differentiation, chromatin 
becomes progressively condensed, forming a 
heterochromatin rim in close apposition with the 
nucleolus, acquiring a configuration termed Surrounded 
Nucleolus (SN; Mattson and Albertini 1990; Debey et 
al., 1993; Zuccotti et al., 1995).  

The morphological variances between these 
two types of oocytes have a biological relevance 
because NSN and SN configurations have been 
correlated with differences in follicle size, oocyte 
diameter and the age of the mouse (Mattson and 
Albertini 1990; Zuccotti et al., 1995, 1998). It has been 
demonstrated that the transition into the SN configuration 
correlates with the timely progression of meiotic 
maturation (Wickramasinghe et al., 1991; Debey et al., 
1993; Zuccotti et al., 1995) suggesting that SN oocytes 
may represent the more advanced stage of preovulatory 
oocytes (Mattson and Albertini 1990; Zuccotti et al., 1995, 
1998). Additionally, after in vitro maturation and 
fertilization, NSN oocytes are unable of development 
beyond the two-cell stage while SN oocytes are capable of 
development to the blastocyst stage (Zuccotti et al., 1998, 
2002). Differences in chromatin configurations have 
also been correlated with changes in transcriptional 
activity, with NSN oocytes transcriptionally active and 
SN oocytes associated with global repression of 
transcriptional activity (Bouniol-Baly et al., 1999; 
Christians et al., 1999; De La Fuente and Eppig 2001; 

Liu and Aoki, 2002; Miyara et al., 2003). 
In the cow, oocytes collected from early and 

middle antral follicles present four patterns of chromatin 
configuration (Fig. 1), from GV0 to GV3 characterized 
by progressive increase in condensation (Lodde et al., 
2007), transcriptional silencing (Lodde et al., 2008; 
Luciano et al., 2011), global DNA methylation (Lodde 
et al., 2009) and progressive histone H4 acetylation 
(unpublished data), as previously reported also in mice 
(Akiyama et al., 2004). As shown in Fig. 2, the GV0 
stage shows a diffuse filamentous pattern of chromatin 
in the whole nuclear area; the GV1 and GV2 
configurations represent early and intermediate stages, 
respectively, of chromatin remodeling, a process 
starting with the appearance of few foci of condensation 
in GV1 oocytes and proceeding with the formation of 
distinct clumps of condensed chromatin in GV2 
oocytes; the GV3 is the stage where the highest level of 
condensation is reached with chromatin organized into a 
single clump (Lodde et al., 2007). Importantly, oocytes 
with a GV0 configuration showed a very limited 
capacity to resume and complete meiosis I after in vitro 
maturation, while virtually all the GV1, GV2 and GV3 
oocytes were able to reach MII stage, despite their GV 
configuration. On the contrary, only a limited 
percentage of GV1 oocytes reached the blastocyst stage 
after in vitro fertilization, while GV2 and GV3 oocytes 
showed a higher embryonic developmental potential 
(Lodde et al., 2007). 

These results further support the general 
principle that meiotic and developmental competencies 
are acquired at sequential stages of oogenesis (Albertini 
et al., 2003), concomitantly with changes in large-scale 
chromatin structure (De La Fuente, 2006) and that 
chromatin remodeling can be considered a marker of 
oocyte differentiation and developmental competence. 

 
The progressive large scale chromatin remodeling 

relies on functional gap-junction mediated 
communications between oocyte and follicular cells 

 
During folliculogenesis oocyte growth and 

differentiation tightly depend on the establishment of a 
patent bidirectional communication between oocytes 
and companion granulosa cells mediated by 
heterologous gap junctions (Eppig, 2001; Matzuk et al., 
2002; Mehlmann et al., 2004). In mouse, previous 
studies indicate that the presence of oocyte-associated 
granulosa cells are required for the progressive 
repression of transcriptional activity in fully grown 
oocytes (De La Fuente and Eppig, 2001) and to promote 
the transition from NSN to SN configuration after 
gonadotropin stimulation (De La Fuente and Eppig, 
2001). This hypothesis is supported also by studies 
where gap junction mediated communications (GJC) 
between mouse oocyte and cumulus cells were 
interrupted, due to targeted deletion of the connexin 37 
gene (Gja4), and chromatin condensation associated
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with transcriptional repression failed to occur 
(Carabatsos et al., 2000). 

Coupling between oocyte and cumulus cells 
undergoes dynamic changes during follicle development 
and the patency of GJC between the two compartments 
decreases in parallel with the meiotic resumption of the 
oocyte (Eppig, 1982; Larsen et al., 1986, 1987). 
However, recent studies performed in the cow, horse, 
dog, cat and pig (Luvoni et al., 2001, 2006; Colleoni et 
al., 2004; Luciano et al., 2004; Dieci et al., 2013) 
indicated that morphologically healthy oocyte-cumulus 
cells complexes isolated from antral follicles without 
evident signs of atresia form a heterogeneous population 
characterized by different degree of GJC functionality.  

In the cow, the direct oocyte-granulosa cell 
communication through gap junctions seems a requisite 
for chromatin remodeling during the final phase of 
oocyte growth (Lodde et al., 2007; Luciano et al., 2011). 
This is supported by the evidences that, at the time of 
collection, the pattern of uncondensed chromatin in 
GV0 oocytes is associated with fully open GJC. On the 
contrary, the percentage of oocytes with functionally 
open communications significantly decreases with the 
increase of chromatin condensation, from GV1 to GV3 
oocytes (Lodde et al., 2007; Luciano et al., 2011), 
indicating that when oocytes reach the highest level of 
chromatin condensation, there is a greater probability of 
loosing coupling with follicular cells (Lodde et al., 
2007). On the other hand, the increase in chromatin 
condensation may represent a consequence of the 
premature interruption of the communication between 
the oocyte and follicular cells before final oocyte 
maturation, since the loss of GJC between the germ and 
somatic compartment has been related with early events 
of follicular atresia (Wiesen and Midgley, 1993). 
 

The manipulation of GJC functionality affects 
chromatin configuration and transcription through 

cAMP-mediated mechanism(s) 
 

The central role of GJC in the modulation of 
chromatin configuration, global transcriptional activity 
and developmental competence acquisition has been 
recently confirmed in bovine oocyte-cumulus cells 
complexes. The use of culture systems that prolonged 
GJC functionality sustained oocyte growth and 
permitted chromatin to gradually organize from GV0 to 
the GV1 configuration, thus allowing the oocyte to 
acquire the ability to mature and to be fertilized in vitro 
(Luciano et al., 2011). .Yet, when GJ functionality was 
experimentally interrupted with the uncoupler 1-
heptanol, chromatin rapidly condensed and RNA 
synthesis suddenly ceased. Interestingly, this effect was 
nullified by treatment with cilostamide, a specific 
inhibitor of the oocyte-specific PDE3, an enzyme-
degrading cAMP (Richard et al., 2001; Conti et al., 
2002; Sasseville et al., 2009), indicating that the 
functional status of GJC may affect both transcriptional 

activity and remodeling of large-scale chromatin 
configuration, potentially through cAMP-dependent 
mechanism(s; Luciano et al., 2011). 

Therefore, besides the well-characterized 
mechanisms of action by which cAMP is known to 
regulate meiotic resumption (Downs, 2010; reviewed in 
Bilodeau-Goeseels, 2011), these studies may suggest 
that cAMP could be also involved in controlling the 
activity of factors that modulate transcription and large-
scale chromatin remodeling during the final phase of 
oocyte growth and before the resumption of meiosis. In 
fact, since the preservation of a proper cAMP content in 
the oocyte even in the absence of functional GJC is able 
to prevent the abrupt condensation of the chromatin this 
makes cAMP the molecule that mostly mediates GJ 
action on the chromatin. 

Oocyte cAMP levels are sustained by 
endogenous adenylate cyclases and constitutively active 
G-protein-coupled receptors (Mehlmann et al., 2002). 
cAMP is generated also by cumulus cells and then 
transported into the oocyte through gap junctions 
(Anderson and Albertini 1976; Bornslaeger and Schultz, 
1985). The manipulation of intracellular cAMP 
concentration has been demonstrated to influence 
functional coupling between oocyte and cumulus cells; 
a decrease in cAMP was accompanied by a drop in 
functional coupling (Luciano et al., 2004; Thomas et al., 
2004). Several attempts have been made in order to 
mimic the physiological system in oocyte in vitro 
maturation taking into account the time for completing 
the developmental competence acquisition. These 
culture systems (namely pre-maturation systems) that 
precede in vitro maturation (Gilchrist and Thompson, 
2007; Gilchrist, 2011; reviewed by Bilodeau-Goeseels, 
2012) are based on the control of spontaneous meiosis 
resumption through the addition of either cAMP 
analogues or adenylate cyclase activator, PDE inhibitors 
(general or specific), or through a combination of these 
treatments. These treatments prevent the loss of 
cumulus-oocyte GJ mediated communications and 
increase oocyte developmental competence (Luciano et 
al., 1999; Guixue et al., 2001; Atef et al., 2005; 
Nogueira et al., 2006; Ozawa et al., 2008; Shu et al., 
2008; Nogueira and Vanhoutte, 2009; Albuz et al., 
2010; Luciano et al., 2011; Dieci et al., 2013; Lodde et 
al., 2013; Rose et al., 2013; Zeng et al., 2013; Richani 
et al., 2014). In several systems, the maintenance of a 
proper cAMP concentration seems to be the main 
requirement to promote regular chromatin transition 
thus endorsing oocyte differentiation (Vanhoutte et al., 
2007; Luciano et al., 2011; Dieci et al., 2013; Lodde et 
al., 2013). 
 

Chromatin manipulation in assisted  
reproduction technologies 

 
There is no doubt that the experimental 

manipulation of large-scale chromatin configuration in
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vivo and in vitro will provide a tool to determine the key 
cellular pathways and oocyte-derived factors involved 
in genome-wide chromatin modifications. However, 
assessment of large-scale chromatin configurations has 
also key implications in ARTs both in human and 
domestic mammals. It has been shown that different 
patterns of chromatin configuration are indicative of 
different metabolic properties, thus potentially 
representing a morphological marker to select a 
population of oocytes with different cultural 
requirements. Several studies support the notion that in 
vitro treatments aiming to improve the developmental 
capability of immature oocytes can have a different 
outcome with pre-maturation culture depending on the 
metabolic status of the oocyte at the time of its removal 
from the follicular environment (Nogueira et al., 2006; 
Vanhoutte et al., 2008, 2009). This has been confirmed 
also by morphological studies in the cow, which 
demonstrated that the pharmacological pre-maturation 
system can negatively affect oocytes obtained from 
medium antral follicles when compared with those 
isolated from earlier stages (Fair et al., 2002). 

It is of extreme importance to realize that 
attempts to manipulate in vitro large-scale chromatin 
configuration must be performed cautiously. In fact, 
even though it is true that the chromatin configuration 
of an oocyte is indicative of its developmental capability 

at the time of its collection from the follicle, 
pharmacological treatments forcing chromatin abruptly 
into a high-condensed state may not necessarily be 
beneficial to the oocyte competence, although 
fundamental in basic science-type investigation 
(Comizzoli et al., 2011). Therefore, the design of pre-
maturation strategies must take into account that 
chromatin condensation and spatial reorganization 
should occur gradually and orderly, recapitulating the 
process that normally occurs in vivo. For example, 
maintenance of a proper functional coupling between 
oocyte and cumulus seems to be crucial in sustaining an 
orderly chromatin condensation in vitro (Luciano et al., 
2011; Dieci et al., 2013; Lodde et al., 2013; Franciosi et 
al., 2014, Reproductive and Developmental Biology 
Laboratory, University of Milan, Milan, Italy, 
unpublished data). Thus, if coupling is prematurely 
interrupted - i.e., when oocytes have not yet acquired 
full competence and are still committed to accumulating 
transcripts and proteins - unexpected chromatin 
condensation can be triggered, thus preventing proper 
and gradual differentiation of large-scale chromatin 
configuration and function.  

In view of all given considerations, knowledge of 
the molecular mechanism(s) leading the oocyte to remodel 
its chromatin configuration under physiological conditions 
will be of great help for assisted reproductive technologies. 

 

 
Figure 1. Transcriptional activity, global methylation, histone H4 acetylation, meiotic and developmental 
competence in relation to chromatin configuration in the bovine oocyte. 
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Figure 2. Bright field and fluorescent images after Hoechst 33342 labeling of bovine oocytes with GV0 (A, A1), 
GV1 (B, B1), GV2 (C, C1), and GV3 (D, D1) configuration (see text for stage definitions). Arrows in the bright 
fields indicate the nuclear envelope. Scale bar: 50 mm. From: Lodde et al., 2007. 
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