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Abstract 
 

Ovarian follicles require an adequate blood 
supply for oxygen, nutrients and hormones, in addition 
to eliminating CO2 and other metabolites. Acquisition of 
an adequate vascular supply is probably a limiting step 
in the selection and maturation of the dominant follicle. 
In this way, there is a progressive interest in the study of 
the growth factors involved in the angiogenic process. 
In addition, a better understanding about the 
mechanisms that regulate the expression and action of 
these factors could be a key point to increase the 
reproductive performance in females. Therefore, this 
review aims to summarize current data on the 
importance of the pro- and anti-angiogenic growth 
factors which regulate angiogenesis in ovarian follicle 
development.  
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Introduction 

 
During embryo development, blood vessels 

differentiate from endothelial precursors by a process 
called vasculogenesis. Angiogenesis is the process of 
new blood vessel development from pre-existing 
vasculature that occurs in embryos and adults (Stouffer 
et al., 2001). In the last two decades, there was a 
progressive interest in the study of angiogenesis due to 
the association of this process with pathological 
conditions in adult tissues, such as tumoral growth and 
inflammation (Smith, 2001). In addition, several aspects 
of human and animal reproduction, such as clinical 
alterations that occur in the ovary and in the female 
reproductive tract depend on angiogenesis (Acosta et 
al., 2003). This process occurs throughout follicular 
development, allowing adequate nutritional and 
hormonal supply for ovarian follicle growth and oocyte 
development, as well as corpus luteum formation 
(Fraser and Lunn, 2000).  

A wide range of growth factors have been 
identified that promote (pro-angiogenic) or inhibit (anti-
angiogenic) angiogenesis (Stouffer et al., 2001). 
However, modulation of the expression and action of 
these factors can be a key point to increase female 

reproductive performance. In this review, aspects 
related to the importance of angiogenesis in ovarian 
follicle development, as well as the role of the 
regulatory pro- and anti-angiogenic growth factors, will 
be discussed. 
 

Blood vessels formation 
 

The vascular system is developed based on two 
distinct processes: vasculogenesis and angiogenesis. 
While blood vessels differentiate from endothelial 
precursors by a process called vasculogenesis during 
embryo development, in adults further vessel 
development from pre-existing vasculature occurs by 
intussusception or sprouting by a process called 
angiogenesis. Angiogenesis is characterized by a 
cascade of events that starts with capillary proliferation 
and culminates with the formation of a new 
microcirculation composed of arterioles, capillaries and 
venules (Redmer and Reynolds, 1996). During the 
development of new blood vessels, some features can be 
observed such as enzymatic degradation of the basal 
membrane of the pre-existing vessels, migration of 
endothelial cells marked by angiogenic stimulus and 
finally, endothelial cell proliferation (Redmer et al., 
2001). This neovascularization is completed with the 
formation of a capillary network and differentiation of 
new capillaries into arterioles and veins (LeCouter et 
al., 2002). 

Studies have demonstrated that circulating 
endothelial precursor cells, i.e., originated from bone 
marrow, may contribute to angiogenesis in adults 
(Carmeliet and Jair, 2000). In addition, recent studies 
indicated the presence of mitogenic endothelial cells, 
which are the primary components of capillaries, in 
specific organs, modulating angiogenic responses in a 
variety of organs (LeCouter et al., 2002). 

It is important to note that in several adult 
tissues, capillary growth rarely occurs and the vascular 
endothelium represents a stable population of cells with 
low mitogenic rates (Klagsbrun and D`Amore, 1996). 
An exception is the rapid growth and regression that 
occurs in the female genital organs, associated with 
equivalent changes in its vascular network (Reynolds 
and Redmer, 1995). The mature ovary shows a highly 
developed vasculature, reflecting its high metabolic rate, 
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which turns this organ into a unique model for studies of 
angiogenesis regulation during growth, differentiation 
and regression of normal tissues in adults (Redmer and 
Reynolds, 1996). 
 

Follicular angiogenesis 
 

The ovarian follicle is the structural and 
functional unit of the mammalian ovary, which supplies 
the necessary environment for oocyte growth and 
maturation (Telfer, 1996). The follicles are surrounded 
by somatic cells (granulosa and theca cells) and can be 
classified in preantral (primordial, primary and 
secondary) and antral (tertiary and preovulatory) 
follicles (Hulshof et al., 1994). It is known that 
vasculature is not equally distributed among the 
population of follicles of the adult ovary, since only 
theca cell layers, present in later follicular stages, have 
vessels. Quiescent primordial follicles and slow-
growing preantral follicles do not have a vascular 
supply of their own, but instead rely on vessels in the 
surrounding stroma. Thus, Martelli et al. (2009) showed 
that an autonomous vascular supply starts to be evident 
in preantral follicles with diameter from 110 µm. 
However, as a follicular antrum develops, the thecal 
layer acquires a vascular sheath consisting of two 
capillary networks located in the theca interna and 
externa, respectively (Stouffer et al., 2001).  

Acquisition of an adequate vascular supply is 
probably a limiting step in the selection and maturation 
of the dominant follicle destined to ovulate (Stouffer et 
al., 2001). Some studies have shown that angiogenesis 
is followed by a vasodilatation, a functional adaptation 
for the occurrence of ovulation, as well as by the 
development of theca endocrine function (Jiang et al., 
2003). Thus, there are evidences that theca cells 
angiogenesis have a primary role in follicular 
development (Tamanini and De Ambrogi, 2004).  

The development and growth of the theca 
vascular network are probably controlled by paracrine 
and angiogenic factors produced by granulosa cells. In 
addition to those factors, Vascular Endothelial Growth 
Factor (VEGF), whose levels increase according to 
follicular growth, can induce the formation of a 

primitive capillary network during the early phases of 
antral follicle development. Moreover, the regulation of 
angiogenesis seems to be dependent on the interaction 
among other growth factors that can act in different 
moments, some of them stimulating growth, while others, 
mediating endothelial cell reorganization in more 
complexes vascular structures (Grasselli et al., 2003).  

The degeneration of the capillary network is a 
relevant phenomenon that causes follicular atresia 
through the interruption of the metabolic supply for 
follicular cells. In addition, an increase in vascular 
density around antral follicles contributes to the 
inhibition of atresia. However, some studies have 
suggested that microvascular changes of atretic follicles 
are a consequence and not the cause of atresia 
(Macchiarelli et al., 1993).  

As the corpus luteum begins its formation, 
thecal capillary sprouts begin to migrate towards and grow 
into the folds of the stratum granulosum. The growth of 
new capillaries during luteal angiogenesis follows a 
cascade of events including changes in the basement 
membrane, migration and proliferation of endothelial cells 
and development of capillary lumina (Plendl, 2000).  
 

Pro-angiogenic growth factors 
 

A variety of parameters, including oxygen 
tension, aging and endocrine or local factors can 
modulate the expression of angiogenic factors. It is 
generally believed that a decline in local oxygen 
concentrations (hypoxia) is a primary initiator of 
angiogenesis in normal and pathologic tissues (Hazzard 
and Stouffer, 2000). In the ovary, pro-angiogenic factors 
promote vascular permeability, supporting antrum 
formation and the events that induce follicular rupture 
(Tamanini and De Ambrogi, 2004). Several pro-angiogenic 
factors are well-known, such as fibroblast growth factor-2 
(FGF-2), VEGF, angiotensin II (ANG II), insulin like 
growth factor-1 (IGF-1), epidermal growth factor (EGF), 
angiopoietin (ANPT) and endothelin-1 (ET-1). However, 
those that seem to be most important in angiogenesis are 
FGF-2, VEGF and ANG II (Redmer et al., 2001). Table 1 
and Fig. 1 summarize the effects of pro-angiogenic factors 
on ovarian follicular development. 

 
Table 1. Summary of the effects of angiogenic factors on ovarian follicular development. 

Angiogenic factors Effects on ovarian follicular development 
FGF-2 Oocyte and granulosa cell survival 

Primordial follicle activation 
Granulosa and theca cell proliferation  

  

VEGF Primordial follicle survival  
Mitogenic effect in granulosa cells 
Transition from primary to secondary follicles 

  

ANG II Regulates oocyte maturation, ovulation and steroidogenesis 
  

IGF-1 Follicular growth and survival 
Increases steroidogenesis 
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Figure 1. Angiogenic growth factors act in different stages of follicular development. 
 

Fibroblast growth factor-2 (FGF-2) 
 

FGF-2, also known as basic FGF (bFGF), was 
the first angiogenic factor indentified in the ovary 
(Gospodarowicz et al., 1985). The localization of FGF-2 
in endothelial cells suggests that it is an important factor 
for endothelial growth (Gospodarowicz et al., 1985).  

FGF-2 is also found in ovarian follicles (rat: 
Nilsson et al., 2001; human: Ben-haroush et al., 2005) 
and corpus luteum (rat: Asakai et al., 1993; bovine: 
Schams et al., 1994), while its receptors are expressed 
in growing follicles (Wandji et al., 1995). In medium 
and large swine follicles, mRNA for FGF-2 and its 
receptor FGFR-2 was detected in granulosa and theca 
cells, respectively. In the bovine ovary, the expression 
of the mRNA for FGF-2 in inner theca significantly 
increases during final follicular growth; however this 
expression was weak in granulosa cells (Shimizu et al., 
2002). This factor exerts an antiapoptotic effect in 
granulosa cells, favoring the production of other 
angiogenic factors (Grasselli et al., 2002). 

Some in vitro studies have shown that addition 
of FGF-2 to the culture medium promoted primordial 
and primary follicles growth (Nilsson et al., 2001), 
granulosa and theca cell proliferation (Wandji et al., 
1996), as well as oocyte survival (Zhou and Zhang, 

2005). Recently, Matos et al. (2007) demonstrated that 
FGF-2 at 50 ng/mL, stimulated goat primordial follicle 
activation after 5 days of in vitro culture. 

 
Vascular Endothelial Growth Factor (VEGF) 

 
VEGF, also known as vascular permeability 

factor (VPF), is a potent mitogenic factor that stimulates 
endothelial cell migration. It has also a role in the 
structural maintenance, increase of capillary 
permeability (Redmer et al., 2001) and a survival factor 
for endothelial cells of microvessels (Stouffer et al., 
2001). The VEGF family is composed of at least six 
members (VEGF A, B, C, D, E and F), and the human 
VEGF-A gene is organized in eight exons, separated by 
seven introns. Alternative exon splicing results in the 
generation of four different isoforms, having 121, 165, 
189, and 206 amino acids, respectively, after signal 
sequence cleavage (VEGF121, VEGF165, VEGF189, 
VEGF206; Stouffer et al., 2001; Ferrara, 2004). VEGF 
A expression was demonstrated in preantral follicles. 
The protein VEGF A has been identified in oocytes of 
human primordial follicles (Otani et al., 1999; Harata et 
al., 2006) and human and rat primary follicles (Celik-
Ozenci et al., 2003). In swine and bovine follicles, 
VEGF A is weakly expressed during early development 
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and this expression becomes higher in granulosa and 
theca cells of dominant follicles (Barboni et al., 2000; 
Greenaway et al., 2005). Expression of mRNA for 
VEGF in the granulosa and theca cells, as well as the 
protein for VEGF in all follicle compartments and 
follicular fluid significantly increase according to the 
stage of follicular development (Yamamoto et al., 1997; 
Greenaway et al., 2004; Taylor et al., 2004). Recently, 
VEGF A expression in rats was occasionally observed 
in early preantral follicles and was always detected in 
preantral follicles during the late stages of development 
(Abramovich et al., 2009; Martelli et al., 2009). 
Furthermore, there are two known VEGF receptors 
(VEGFR-1 and VEGFR-2) that bind to VEGF-A. 
VEGFR-1 is expressed in quiescent and proliferative 
endothelial cells (Berisha et al., 2000) and induced the 
formation of vessels by VEGF (Boonyaprakob et al., 
2003). VEGFR-2 is expressed specially in angiogenic 
endothelial cells and regulates the effects of VEGF on 
the proliferation and migration of these cells (Celik-
Ozenci et al., 2003). 

High VEGF concentrations cause a 
destabilization of the blood vessels, resulting in a new 
vascular network development, while VEGF deficiency 
results in blood vessel regression (Hanahan, 1997). 
Furthermore, Hazzard et al. (1999) demonstrated that 
gonadotropins stimulated VEGF secretion in primate 
preovulatory follicles and can act as regulatory factors 
of VEGF production. In this way, modulation of the 
hormones that influence VEGF expression, such as 
human (hCG) and equine (eCG) chorionic 
gonadotrophin, luteinizing hormone (LH) and follicle 
stimulating hormone (FSH), as well as their levels in the 
follicle, are possibly one of the keys to control ovarian 
follicular angiogenesis. There are also in vitro (Pepper 
et al., 1992) and in vivo (Asahara et al., 1995) 
indications of synergistic effects between angiogenic 
growth factors. In bovine, association between VEGF 
and FGF-2 induced an in vitro angiogenic response, 
which was stronger and faster than the effect produced 
by these two factors individually.   

Recent in vitro studies suggested that VEGF 
has a mitogenic effect in granulosa cells and can 
stimulate follicular growth in rats (Otani et al., 1999). In 
this species, Kezele et al. (2005) identified that the gene 
encoding for VEGF-A is an important regulator of 
primordial follicle development. In addition, Danforth et 
al. (2003) showed that VEGF increases the number of 
primary and secondary follicles in rat ovaries. Recently, 
a study verified that VEGF promoted the transition from 
primary to secondary follicles in bovine (Yang and 
Fortune, 2007). Furthermore, a study associated VEGF 
production and the increase of blood vessel content to 
follicular activation, i.e., the transition from the 
primordial to primary follicle stage (Mattioli et al., 
2001). Another study showed that endogenous VEGF is 
essential to rodent primordial follicle survival (Roberts 
et al., 2007). Moreover, the inhibition of VEGF activity 

produced an increase in ovarian apoptosis through an 
unbalance in the pro and antiapoptotic protein rate, 
leading to a great number of atretic follicles 
(Abramovich et al., 2006). Other authors observed that 
the direct injection of VEGF into the ovary increases 
vasculature (Shimizu, 2006), the number of antral 
follicles and inhibits apoptosis (Quintana et al., 2004).  
 

Endocrine gland-derived vascular endothelial 
growth factor (EG-VEGF) 

 
Endocrine gland-derived vascular endothelial 

growth factor (EG-VEGF) was identified as a novel 
human endothelial cell mitogen, through a bioassay 
assessing the ability of a library of purified human 
secreted proteins to promote the growth of primary 
adrenal cortex capillary endothelial cells (LeCouter et 
al., 2001). EG-VEGF does not belong to the VEGF 
family or other known families of endothelial mitogens 
but instead is a member of a structurally related class of 
peptides including the digestive enzyme colipase, the 
Xenopus headorganizer, Dickkopf (Glinka et al., 1998), 
venom protein A (VPRA; Joubert and Strydom, 1980) 
or mamba intestinal toxin-1 ‘‘MIT-1’’ (Schweitz et al., 
1999), a non-toxic component of Dendroaspis polylepis 
polylepis venom, and the secreted proteins from 
Bombina variegata designated Bv8 (Mollay et al., 
1999). Its receptors were designated EG-VEGFR-1 and 
EG-VEGFR-2 (Masuda et al., 2002). EG-VEGF 
selectively promoted proliferation, survival and 
chemotaxis of endothelial cells isolated from 
steroidogenic tissues (Lin et al., 2002). Indeed, 
exogenous EG-VEGF in the ovary (LeCouter et al., 
2001) or testis (LeCouter et al., 2003) can dramatically 
affect vascular leakage. Northern blot analysis of a 
panel of RNAs from a variety of human tissues revealed 
EG-VEGF expression in ovary, testis, adrenal and 
placenta (LeCouter et al., 2001). In situ hybridization 
analysis demonstrated that steroidogenic cells within 
these glands are the source of EG-VEGF (LeCouter et 
al., 2001). Granulosa cells in primordial and primary 
follicles express EG-VEGF strongly. As the secondary 
follicle matures, EG-VEGF expression in granulosa 
cells declines (Ferrara et al., 2003). At approximately 5 
days post-ovulation, both VEGF-A and EG-VEGF are 
strongly expressed in a portion of granulosa lutein cells, 
whereas 8 days post-ovulation EG-VEGF expression is 
intense in the theca lutein cells, while VEGF expression 
has diminished to the point where only weak signal 
remains in the peripheral thecal cells (Corner, 1956). 
 

Angiotensin II (ANG II) 
 

ANG II is a potent vasoactive peptide, which is 
converted from ANG I by angiotensin conversion 
enzyme, and induces neovascularization in rabbit retina 
(Fernandez et al., 1985), mouse and human 
endometrium (Hu et al., 1996; Li and Ahmed, 1996; 
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Walsh et al., 1997), as well as in the bovine corpus 
luteum (Walsh et al., 1997). ANG II acts by its binding 
to a group of receptors, classified as ANG receptor type 
1 (AT-1) and 2 (AT-2). Both receptors are expressed in 
the ovary, and their presence and distribution differ 
significantly among the species and follicular 
development stages (Pucell et al., 1991; Obermüller et 
al., 1998). In rabbit ovaries, AT-2 receptor is expressed 
predominantly in granulosa cells of preovulatory 
follicles, while AT-1 is located in theca and stroma cells 
(Yoshimura et al., 1996). In mouse, AT-2 is expressed 
exclusively in granulosa cells of large atretic follicles, 
while AT-1 is expressed in all structures of ovarian 
follicles (Pucell et al., 1991). The presence of ANG II 
receptors in the ovary suggests a possible role of this 
peptide on this organ. Mitsube et al. (2003) reported 
that only the blockage of AT-2 increases blood flow in 
the mouse ovary, suggesting that vasoconstriction 
occurs specifically through this receptor. In addition, 
another study observed high ANG II levels during 
proestrous in the mouse, and this fact may be associated 
with the high vascular proliferation that occurs in this 
phase of the estrous cycle (Costa et al., 2003). 
Moreover, ANG II improves angiogenic activity of 
VEGF in bovine microvascular cells (Otani et al., 
2000).  

ANG II regulates oocyte maturation (Kuo et 
al., 1991), ovulation (Yoshimura et al., 1996) and 
steroidogenesis (Yoshimura et al., 1993) through the 
modulation of ovarian blood flow (Mitsube et al., 
2003). ANG II is well known for its vasoconstrictor 
action; however this effect was not observed in the 
ovary after treatment with ANG II (Costa et al., 2003). 
The vasodilatation was observed in rabbit ovaries 
perfused in vitro with ANG II and this effect can be due 
to the release of gonadotropins stimulated by ANG II 
(Kuo et al., 1991). In addition, Shuttleworth et al. 
(2002) suggested a possible role of ANG II in swine 
early folliculogenesis and steroidogenesis. In bovine, 
ANG II restored the inhibitory effect of follicular cells 
on oocyte maturation (Giometti et al., 2005; Stefanello 
et al., 2006) and stimulated nuclear and cytoplasmic 
maturation of swine oocytes (Li et al., 2004). In 
addition, ANG II appears to regulate the induction of 
several autocrine growth factors, such as platelet 
derived growth factor, transforming growth factor-β, 
FGF-2 and IGF-1, and induces the angiogenic activity 
through the paracrine function of VEGF in 
microvascular cells (Otani et al., 2000). 
 

Insulin like growth factor-1 (IGF-1) 
 

The IGF system appears to have indirect 
effects on angiogenesis through stimulatory action for 
VEGF production in luteal cells, as well as through the 
stimulus of endothelial cell proliferation and 
differentiation (Schams et al., 2001). In bovine, a high 
expression of IGF-1 in theca interna was observed 

before the phase of follicular selection, while the 
expression increased in granulosa cells after this phase. 
In addition, mRNA for IGF-1 receptor (IGFR-1) was 
present in theca interna and granulosa cells with 
increased levels during final follicular development 
(Schams et al., 2002). 

In association with FSH, addition of IGF-1 to 
the in vitro culture medium of preantral follicles 
stimulated follicular growth in several species (human: 
Louhio et al., 2000; bovine: Gutierrez et al., 2000; rats: 
Zhao et al., 2001; mouse: Liu et al., 1998). Experiments 
performed by Zhou and Zhang (2005) showed that IGF-
1 promoted the growth and maintained the viability of 
oocytes from caprine preantral follicles. In swine, 50 
ng/mL of IGF-1 promoted follicular growth, stimulated 
granulosa cell proliferation and prevented apoptosis of 
preantral follicles cultured for 4 days in the presence of 
serum (Mao et al., 2004). Furthermore, different 
concentrations of IGF-1 (10, 50 and 100 ng/mL) 
increased follicular diameter and steroidogenesis of 
mouse preantral follicles cultured in vitro for 6, 10 
and 12 days (Demeestere et al., 2004). In a recent 
study, Thomas et al. (2007) showed that follicular 
diameter was increased over control levels by 
addition of 50 ng/ml of IGF-I during 6 days of culture.  
 

Anti-angiogenic growth factors 
 
Angiogenesis is also modulated by inhibitory 

factors, such as thrombospodin, angiostatin, endostatin, 
2-metoxiestradiol, hyaluronic acid, platelet factor-4, 
tumoral necrose factor α and interferon γ. These 
substances blocked endothelial cell proliferation and 
migration, as well as in vitro capillary formation 
(Espinosa-Cervantes and Rosado-Garcia, 2002). 

Regarding thrombospodin 1 and 2, they bind to 
their receptor CD36 and inhibit angiogenesis, inducing 
endothelial cell apoptosis. In rat ovaries, the 
expression of thrombospondin 1 and CD36 mRNA is 
high in granulosa cells of preantral and antral 
follicles and is limited in theca cells. Nevertheless, 
there is no expression of mRNA for thrombospodin 2 
in ovarian follicles. Furthermore, thrombospodin 1 is 
strongly expressed in small follicles where the 
vascularization is absent, showing that expression of 
thrombospodins decreases during follicular 
maturation together with the increase in VEGF levels 
(Petrik et al., 2002). 

Platelet factor-4 inhibits angiogenesis both in 
vivo and in vitro and the inhibitory effects are due to 
the formation of complexes with FGF-2, inhibiting 
FGF-2 binding to its receptors (Perollet et al., 1998). 
 

Final considerations 
 

Increasing evidence suggests that physiological 
angiogenesis in ovarian follicles and corpus luteum are 
fundamental features of mammalian reproduction.
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Failures in vascular development in these structures 
may be the reason for several ovarian dysfunctions 
observed during the estrous cycle and pregnancy. 
Therefore, it is necessary to evaluate both in vivo and in 
vitro influences of the angiogenic factors, alone or in 
association, on the survival (anti-apoptotic effects) of 
ovarian cells in different species. This information will 
provide novel opportunities for therapeutic interventions 
and improvement of the efficiency of assisted 
reproduction in humans and animals in the future. 
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