

Abstracts - 35th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Folliculogenesis, oogenesis and superovulation

In vivo embryo production in donors with low and high antral follicle counts superovulated with low and high FSH doses

JOAO PAULO MENDES LOLLATO ^{1,3,2}, Ana Clara Canto Souza ¹, Rubens César Pinto da Silva ⁴, Márcio de Oliveira Marques. ⁴, Adriano ⁵, Reuel Luiz Gonçalves ³, Lucas Santana da Cunha ², Marcelo Marcondes Seneda ¹, Fabio Morotti ^{1,2}

¹ UEL - Universidade Estadual de Londrina (Londrina, PR - Brasil), ² UEL - Professional Master's in Veterinary Clinics (Londri), ³ Biogénesis - Biogénesis Bagó (Curitiba, PR - Brasil), ⁴ Geraembryo - Geraembryo (Cornélio Procópio, PR - Brasil), ⁵ HoRa Hofig Ramos - Fazenda Nossa Senhora de Fátima (Brasilândia, MS, Brazil)

Resumo

This study evaluated embryo production in Nelore donors with low and high antral follicle count (AFC) subjected to a MOET program using low and high FSH doses for SOV. On D-30, 16 donors cows were underwent a pre-synchronization protocol with an intravaginal P4 device (P4, 1g, ReproNeo®, Globalgen, Jaboticabal, Brazil), 2mg EB (Bioestrogen®, Biogénesis Bagó, Curitiba, Brazil) and 75μg PGF2α (Croniben®, Biogénesis Bagó). On D-22, P4 device was removed and was applied 75μg of PGF2α, 300IU of eCG (Ecegon®, Biogénesis Bagó) and 1mg EC (Croni-Cip®, Biogénesis Bagó). On D-26, the AFC (> 2 mm) of each donor was evaluated by ultrasound and divided in 2 groups, low AFC (n=8; ≤ 15 follicles; mean=10±0.91) and high AFC (n=8; ≥ 25 follicles; mean=36±6.05). They received two SOV programs using a dose of 150 and 300 IU of FSH (Pluset®, Biogénesis Bagó). The SOV protocol started with an intravaginal P4 device and 2mg EB on D0. On D4, all cows received FSH distributed in decreasing doses twice a day, D4 40%; D5 30% and D6 20% of FSH plus 150µg of PGF2α. On D7, P4 device was removed and 10% of FSH was divided in two applications. On the morning of D8, 10.5 mg of buserelin acetate (Gonaxal®, Biogénesis Bagó) was applied and the inseminations were performed 12h and 24h later. On D15, uterine flushing was performed and the embryos were recovered, identified, and classified with a stereomicroscope according to the IETS criteria. Embryos with grades of I and II were frozen and stored at -196°C. Data were analyzed by two models employing ANOVA and Tukey's test in a procedure for an adjusted mixed effect model (P≤0.05). The first model contemplated a split-plot scheme (AFC, FSH dose and interaction) and second model considered the treatment effect (low-150, low-300, high-150 and high-300). In the first model, AFC showed effect (P<0.05) for the number of CL (low 10.7±1.6a vs high 19.2±3.1b), but total structures, viable and freezable embryos were similar (P>0.1) between low and high AFC. The 300 IU of FSH resulted greater (P<0.01) numbers of CL ($20.5\pm2.4b$ vs $9.4\pm2.3a$), total structures ($12.2\pm1.9b$ vs $6.2\pm1.7a$) and viable ($9.1\pm1.5b$ vs $4.9\pm1.4a$) and freezable embryos (7.8±1.3b vs 3.0±0.9a) than the 150 IU dose. There was no interaction of AFC*FSH (P>0.05). In the second model, a treatment effect (P<0.05) generally showed better MOET performance for high-300 group in relation to low-150, high-150 and low-300 to numbers of CL (26.0±3.4b vs 6.4±1.5a, 12.4±4.1a and 15±1.9a), total structures (14.0±2.8c vs 4.6±2.1a, 7.9±2.7ab and $10.4\pm2.4b$), viable ($10.9\pm2.1b$ vs $4.2\pm2.2a$, $5.6\pm1.9a$ and $7.2\pm2.2ab$) and freezable embryos ($9.2\pm1.7b$ vs $2.4\pm1.5a$, $3.6\pm1.3ab$ and 6.4±1.9b), respective groups. In conclusion, the embryo yield was not influenced by the AFC category but was influenced by the FSH dose. Furthermore, high-AFC donors superovulated with the highest FSH dose presented the best performance in terms of embryo yield.