Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0071
Animal Reproduction (AR)
ORIGINAL ARTICLE

Characterization of Brazilian Buriti oil biomaterial: the influence on the physical, chemical properties and behaviour of Goat Wharton’s jelly mesenchymal stem cells

Camila Ernanda Sousa de Carvalho; Fernando da Silva Reis; Elis Rosélia Dutra de Freitas Siqueira Silva; Dayseanny de Oliveira Bezerra; Isnayra Kerolaynne Carneiro Pacheco; Ana Cristina Vasconcelos Fialho; José Milton Elias de Matos; Wanderson Gabriel Gomes de Melo; Yulla Klinger Pereira de Carvalho Leite; Napoleão Martins Argôlo Neto; Maria Acelina Martins de Carvalho

Downloads: 3
Views: 182

Abstract

Abstract: The Brazilian Buriti oil presents low extraction costs and relevant antioxidant properties. Thus, this work aimed to analyze Buriti oil biomaterial (BB), within its physicochemical properties, biocompatibility and cellular integration, with the purpose to the use as a growth matrix for Goat Wharton’s jelly mesenchymal stem cells. Biomaterials were produced from Buriti oil polymer (Mauritia flexuosa), for it’s characterization were performed Infrared Region Spectroscopy (FTIR) and Thermogravimetric Analysis (TG and DTG). The biointegration was analyzed by Scanning Electron Microscopy (SEM) and histological techniques. In order to investigate biocompatibility, MTT (3-(4,5-dimetil-2-tiazolil)-2,5-difenil-2H-tetrazólio) test and hemolytic activity tests were performed. The activation capacity of immune system cellswas measured by phagocytic capacity assay and nitric oxide synthesis . The BB presented an amorphous composition, with high thermal stability and high water expansion capacity, a surface with micro and macropores, and good adhesion of Wharton’s jelly mesenchymal stem cells (MSCWJ). We verified the absence of cytotoxicity and hemolytic activity, in addition, BB did not stimulate the activation of macrophages. Proving to be a safe material for direct cultivation and also for manufacturing of compounds used for in vivo applications.

Keywords

cell growth, cytotoxicity, polyurethane

References

Araújo MVG, Vieira JVF, Zawadzki SF. Inclusão de poliuretanos de derivados de ciclodestrinas e poli(etileno) glicol. In: Anais do 11° Congresso Brasileiro de Polímeros; 2011; Campos do Jordão, SP. São Carlos: ABPol; 2011. p. 2137-42.

Barreto LA, Sacramento LO, Andrade JA, Quintanilha LF. Células tronco mesenquimais derivadas de tecido adiposo no tratamento de cirrose hepática. Rev Ciênc Méd Biol. 2017;16(2):230. http://dx.doi.org/10.9771/cmbio.v16i2.22543.

Bellincanta T, Poletto P, Thurmer MB, Duarte J, Toscan A, Zeni M. Preparação e caracterização de membranas poliméricas a partir da blenda polisulfona/poliuretano. Polímeros. 2011;21(3):229-32. http://dx.doi.org/10.1590/S0104-14282011005000045.

Bhaskar B, Owen R, Bahmaee H, Wally Z, Sreenivasa Rao P, Reilly GC. Composite porous biomaterial of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-Only biomaterials. J Biomed Mater Res A. 2018;106(5):1334-40. http://dx.doi.org/10.1002/jbm.a.36336. PMid:29316238.

Cândido TLN, Silva MR, Agostini-Costa TS. Bioactive compounds and antioxidant capacity of Buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chem. 2015;177:313-9. http://dx.doi.org/10.1016/j.foodchem.2015.01.041. PMid:25660891.

Cangemi JM. Biodegradação de poliuretano derivado do óleo de mamona [tese]. São Paulo: Universidade de São Paulo; 2006. Portuguese.

Carmagnola I, Ranzato E, Chiono V. Scaffold functionalization to support a tissue biocompatibility. In: Deng Y, Kuiper J, editors. Functional 3D tissue engineering scaffolds materials, technologies and applications. Duxford: Woodhead Publishing; 2018. http://dx.doi.org/10.1016/B978-0-08-100979-6.00011-2.

Chen B, Jing X, Mi H, Zhao H, Zhang W, Peng X, Turng L. Fabrication of Polylactic Acid/Polyethylene Glycol (PLA/PEG) porous scaffold by supercritical CO2 foaming and particle leaching. Polym Eng Sci. 2015;57(3-4):147-51. http://dx.doi.org/10.1002/pen.24073.

Costa Victal J, Valério LB, Oshiro MC, Baptista SC, Pinheiro F. Métodos alternativos in vitro e in silico: métodos auxiliares e substitutivos à experimentação animal. Intertox. 2015;7(2):36-57. http://dx.doi.org/10.22280/revintervol7ed2.172.

Freitas MLF, Chisté LC, Polachini TC, Sardella LACZ, Aranha CPM, Ribeiro APB, Nicoletti VR. Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil; parámetros de calidad y comportamiento térmico del aceite de buriti (Mauritia flexuosa L.). Grasas Aceites. 2017;68(4):9. http://dx.doi.org/10.3989/gya.0557171.

Gabriel LP, Benatti ACB, Jardini AL, Bastos GNT, Kharmandayan P, Dias CGBT, Maciel-Filho R. Synthesis and characterization of bio-based polyurethane for tissue engineering applications. Chem Eng Trans. 2016;49(11):1682-90. http://dx.doi.org/10.3303/CET1649059.

Grando FCC, Felício CA, Twardowschy A, Paula FM, Batista VG, Fernandes LC, Curi R, Nishiyama A. Modulation of peritoneal macrophage activity by the saturation state of the fatty acid moiety of phosphatidylcholine. Braz J Med Biol Res. 2009;42(7):599-605. http://dx.doi.org/10.1590/S0100-879X2009005000003. PMid:19466285.

Jaganathan SK, Mani MP. Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nano fi bers for wound healing applications. J Appl Polym Sci. 2018;136(3):46942. http://dx.doi.org/10.1002/app.46942.

Leite MDR, Marinho TMA, Fook MVL. Obtenção e caracterização de scaffolds de policaprolactona produzidos a partir do sistema BioExtruder. Rev Eletron Mater Process. 2016;11(1):30-3.

Macedo V, Zimmermmann MVG, Koester LS, Scienza LC, Zattera AJ. Flexible polyurethane foams filled with pinnus elliotti cellulose. Polímeros. 2017;27(spe):27-34. http://dx.doi.org/10.1590/0104-1428.2212.

Osorio MA, Henao LJ, Velasquez JA, Canas AS, Restrep LM, Ganan PF, Zuluaga RO, Ortiz IC, Castro CI. Biomedical applications of polymeric biomaterials. Dyna. 2017;84(201):241-52. http://dx.doi.org/10.15446/dyna.v84n201.60466.

Pal K, Pal S. Development of porous hydroxyapatite scaffolds. Mater Manuf Process. 2006;21(3):325-8. http://dx.doi.org/10.1080/10426910500464826.

Paula CG, Trichês ES. Preparação e caracterização de scaffolds de β-fosfato tricálcico pelo método de freeze casting. Cerâmica. 2018;64(2018):553-8. http://dx.doi.org/10.1590/0366-69132018643722415.

Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: clinical translation review. J Biomed Mater Res A. 2022;110(8):1460-87. http://dx.doi.org/10.1002/jbm.a.37394. PMid:35481723.

Peng C, Vishwakarma A, Zhuoran L, Miyoshi T. Barton HA, Joy A. Modification of a conventional polyurethane composition provides significant anti-biofilm activity against Escherichia coli. Polym Chem. 2018;9:3195-8. http://dx.doi.org/10.1002/jbm.a.37394. PMid:35481723.

Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A. Review article bioprocessing of mesenchymal stem cells and their derivatives : toward cell-free therapeutics. Stem Cells Int. 2018;2018(III):9415367. http://dx.doi.org/10.1155/2018/9415367. PMid:30275839.

Pollo LD, Duarte LT, Anacleto M, Habert AC, Borges CP. Polymeric membranes containing silver salts for propylene/propane separation. Braz J Chem Eng. 2012;29(2):307-14. http://dx.doi.org/10.1590/S0104-66322012000200011.

Rosa LC. Engenharia tecidual: desenvolvimento de um novo scaffold injetável para aplicação na área da saúde [dissertação]. Pelotas: Universidade Católica de Pelotas; 2017. Portuguese.

Scaffaro R, Lopresti F, Botta L, Rigogliuso S, Ghersi G. Preparation of three-layered porous PLA/PEG Scaffold: relationship between morphology, mechanical behavior and cell permeability. J Mech Behav Biomed Mater. 2016;54:8-20. http://dx.doi.org/10.1016/j.jmbbm.2015.08.033. PMid:26410761.

Serra IR, Fradique R, Vallejo MCS, Correia TR, Miguel SP, Correia IJ. Production and Characterization of Chitosan/Gelatin/β-TCP Scaffolds for Improved Bone Tissue Regeneration. Mater Sci Eng C. 2015;55:592-604. http://dx.doi.org/10.1016/j.msec.2015.05.072. PMid:26117793.

Silva GC. Células tronco da geléia de wharton do cordão umbilical de caprinos (Capra hircus): protocolos de isolamento e caracterização [dissertação]. Teresina: Universidade Federal do Piauí; 2016. Portuguese.

Silva GR, Silva-Cunha A Jr, Behar-Cohen F, Ayres E, Oréfice RL. Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym Degrad Stabil. 2010;95(4):491-9. http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.001.

Silva SM, Sampaio KA, Taham T, Rocco SA, Ceriani R, Meirelles AJA. Characterization of oil extracted from buriti fruit (Mauritia flexuosa) grown in the Brazilian Amazon region. J Am Oil Chem Soc. 2009;86(7):611-6. http://dx.doi.org/10.1007/s11746-009-1400-9.

Sousa RP, Duarte ABG, Pinto Y, Sá NAR, Alves BG, Cibin FWS, Silva GC, Carvalho CES, Argolo NM No, Rodrigues APR, Silva CMG, Figueiredo JR, Carvalho MAM. In vitro activation and development of goat preantral follicles enclosed in ovarian tissue co-cultured with mesenchymal stem cells. Reprod Sci. 2021;28(6):1709. http://dx.doi.org/10.1007/s43032-021-00540-3. PMid:33721296.

Spontón M, Casis N, Mazo P, Raud B, Simonetta A, Rios L, Estenoz D. Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int Biodeterior Biodegradation. 2013;85:85-94. http://dx.doi.org/10.1016/j.ibiod.2013.05.019.

Torres AL, Gaspar VM, Serra IR, Diogo GS, Fradique R, Silva AP, Correia IJ. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2013;33(7):4460-9. http://dx.doi.org/10.1016/j.msec.2013.07.003. PMid:23910366.

Wattanutchariya W, Changkowchai W. Characterization of porous scaffold from chitosan-gelatin/hydroxyapatite for bone grafting. In: International MultiConference of Engineers and Computer Scientists; 2014; Hong Kong. Taiwan: IAENG; 2014. (vol. 2).

Yan LP, Oliveira JM, Oliveira AL, Reis RL. In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. J Biomed Mater Res B Appl Biomater. 2015;103(4):888-98. http://dx.doi.org/10.1002/jbm.b.33267. PMid:25164158.

Yuan J, Lin S, Shen J. Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Colloids Surf B Biointerfaces. 2008;66(1):90-5. http://dx.doi.org/10.1016/j.colsurfb.2008.05.020. PMid:18620851.
 


Submitted date:
05/17/2023

Accepted date:
10/30/2023

65721e43a9539564363e5e33 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections