Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2019-0085
Animal Reproduction (AR)
Original Article

Influence of long-term thermal stress on the in vitro maturation on embryo development and Heat Shock Protein abundance in zebu cattle

Ralf Pöhland; Mirela Brochado Souza-Cácares; Tirtha Kumar Datta; Jens Vanselow; Maria Isabel Mello Martins; Wilian Aparecido Leite da Silva; Christopher Junior Tavares Cardoso; Fabiana de Andrade Melo-Sterza

Downloads: 0
Views: 803

Abstract

Abstract: The objective of this study was to investigate the influence of long-term temperature stress during the in vitro maturation (IVM) of oocytes on the in vitro embryo production (IVP) and the abundance of HSP70 and HSP90 in zebu cattle. Viable cumulus-oocyte complexes (COCs) were incubated for 24 h at 37 °C, 38.5 °C, or 40 °C for the low-, physiological, and high-temperature stress treatments, respectively. Thereafter, they were subjected to in vitro fertilization and culture. Temperature did not affect the polar body extrusion. However, IVP was adversely affected when IVM took place at 37 °C and 40 °C. The highest abundance of HSP70 was observed in cumulus cells after maturation of COCs at 40 °C. In contrast, HSP70 was more abundant in oocytes at both 37 °C and 40 °C; however, at 40 °C, the difference to the control group (38.5 °C) was not significant. In contrast, the highest abundance of HSP90 was observed in oocytes and cumulus cells at 37 °C. It appears that HSP70 and HSP90 respond to cold and heat stress in different ways. In conclusion, moderately high (40 °C) and low (37 °C) thermal stress for 24 h during IVM is detrimental to the developmental competence of oocyte and is accompanied by changes in the abundances of HSP70 and HSP90, especially in cumulus cells.

Keywords

oocytes, HSP70, HSP90, bovine

References

Baufeld A, Koczan D, Vanselow J. L-lactate induces specific genome-wide alterations of gene expression in cultured bovine granulosa cells. BMC Genomics. 2019;20(1):273. http://dx.doi.org/10.1186/s12864-019-5657-6. PMid:30953450.

Beachy S, Kisailus A, Repasky E, Subjeck J, Wang X, Kazim A. Engineering secretable forms of chaperones for immune modulation and vaccine development. Methods. 2007;43(3):184-93. http://dx.doi.org/10.1016/j.ymeth.2007.06.001. PMid:17920514.

Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod. 1990;43(4):543-7. http://dx.doi.org/10.1095/biolreprod43.4.543. PMid:2289008.

Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev. 2018;64(5):385-92. http://dx.doi.org/10.1262/jrd.2018-029. PMid:29937465.

Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018;24(3):245-66. http://dx.doi.org/10.1093/humupd/dmx040. PMid:29432538.

Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007;581(19):3702-10. http://dx.doi.org/10.1016/j.febslet.2007.05.039. PMid:17544402.

Edwards J, Saxton A, Lawrence J, Payton R, Dunlap J. Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J Dairy Sci. 2005;88(12):4326-33. http://dx.doi.org/10.3168/jds.S0022-0302(05)73119-2. PMid:16291624.

Edwards JL, Hansen PJ. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol Reprod Dev. 1997;46(2):138-45. http://dx.doi.org/10.1002/(SICI)1098-2795(199702)46:2<138::AID-MRD4>3.0.CO;2-R. PMid:9021745.

Edwards JL, Hansen PJ. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol Reprod. 1996;55(2):341-6. http://dx.doi.org/10.1095/biolreprod55.2.341. PMid:8828838.

El-Sheikh Ali H, Kitahara G, Tamura Y, Kobayashi I, Hemmi K, Torisu S, Sameshima H, Horii Y, Zaabel S, Kamimura S. Presence of a temperature gradient among genital tract portions and the thermal changes within these portions over the estrous cycle in beef cows. J Reprod Dev. 2013;59(1):59-65. PMid:23095515.

Ferreira R, Ayres H, Chiaratti MR, Ferraz M, Araújo A, Rodrigues C, Watanabe YF, Vireque AA, Joaquim DC, Smith LC, Meirelles FV, Baruselli PS. The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J Dairy Sci. 2011;94(5):2383-92. http://dx.doi.org/10.3168/jds.2010-3904. PMid:21524528.

García-Ispierto I, López-Gatius F, Bech-Sabat G, Santolaria P, Yániz J, Nogareda C, De Rensis F, López-Béjar M. Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology. 2007;67(8):1379-85. http://dx.doi.org/10.1016/j.theriogenology.2007.02.009. PMid:17412409.

Gendelman M, Roth Z. Seasonal effect on germinal vesicle-stage bovine oocytes is further expressed by alterations in transcript levels in the developing embryos associated with reduced developmental competence. Biol Reprod. 2012;86(1):1-9. http://dx.doi.org/10.1095/biolreprod.111.092882. PMid:21957191.

Halvaei I, Khalili MA, Soleimani M, Razi MH. Evaluating the role of first polar body morphology on rates of fertilization and embryo development in ICSI cycles. Int J Fertil Steril. 2011;5(2):110-5. PMid:24963368.

Hansen PJ. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci. 2004;82-83:349-60. http://dx.doi.org/10.1016/j.anireprosci.2004.04.011. PMid:15271465.

Hassan FU, Nawaz A, Rehman MS, Ali MA, Dilshad SMR, Yang C. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim Nutr. 2019;5(4):340-50. http://dx.doi.org/10.1016/j.aninu.2019.06.005. PMid:31890910.

Hooper LM, Payton RR, Rispoli LA, Saxton AM, Edwards JL. Impact of heat stress on germinal vesicle breakdown and lipolytic changes during in vitro maturation of bovine oocytes. J Reprod Dev. 2015;61(5):459-64. http://dx.doi.org/10.1262/jrd.2014-168. PMid:26120041.

Jasnic N, Korac A, Velickovic K, Golic I, Djordjevic J, Djurasevic S, Djordjevic I, Vujovic P, Cvijic G. The effect of acute heat exposure on rat pituitary corticotroph activation: the role of vasopressin. Folia Histochem Cytobiol. 2010;48(4):507-12. PMid:21478090.

Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol. 2020;11(1):25. http://dx.doi.org/10.1186/s40104-019-0408-8. PMid:32095238.

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5. http://dx.doi.org/10.1038/227680a0. PMid:5432063.

Lima RS, Risolia PHB, Ispada J, Assumpção MEOA, Visintin JA, Orlandi C, Paula-Lopes FF. Role of insulin-like growth factor 1 on cross-bred Bos indicus cattle germinal vesicle oocytes exposed to heat shock. Reprod Fertil Dev. 2017;29(7):1405-14. http://dx.doi.org/10.1071/RD15514. PMid:27619511.

Macedo G, Zúccari C, Costa e Silva E. Efeito do estresse na eficiência reprodutiva de fêmeas bovinas. Rev Bras Reprod Anim. 2012;36(1):10-7.

Maloyan A, Palmon A, Horowitz M. Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. Am J Physiol. 1999;276(5):R1506-15. http://dx.doi.org/10.1152/ajpregu.1999.276.5.R1506. PMid:10233045.

Maya-Soriano M, Taberner E, López-Béjar M. Retinol improves in vitro oocyte nuclear maturation under heat stress in heifers. Zygote. 2013;21(4):377-84. http://dx.doi.org/10.1017/S0967199412000135. PMid:22785151.

Morán-Luengo T, Kityk R, Mayer MP, Rüdiger SGD. Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol Cell. 2018;70(3):545-552.e9. http://dx.doi.org/10.1016/j.molcel.2018.03.028. PMid:29706537.

Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH, and apoptosis level of bovine oocytes exposed to heat stress. Zygote. 2012a;20(3):249-59. http://dx.doi.org/10.1017/S0967199411000220. PMid:21729376.

Nabenishi H, Takagi S, Kamata H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A. Mol Reprod Dev. 2012b;79(1):31-40. http://dx.doi.org/10.1002/mrd.21401. PMid:22128015.

Parrish J, Krogenaes A, Susko-Parrish J. Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology. 1995;44(6):859-69. http://dx.doi.org/10.1016/0093-691X(95)00271-9. PMid:16727781.

Paula-Lopes FF, Lima RS, Satrapa RA, Barros CM. Influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature. J Anim Sci. 2013;91(3):1143-53. http://dx.doi.org/10.2527/jas.2012-5802. PMid:23296831.

Poehland R, Tomek W, Becker F, Kurth J, Kanitz W, Bhojwani S. Qualitative and quantitative differences of cytoskeleton proteins in embryos produced in vitro, in vivo, and by somatic nuclear transfer. Mol Reprod Dev. 2008;75(7):1109-19. http://dx.doi.org/10.1002/mrd.20848. PMid:18095314.

Reader KL, Stanton JL, Juengel JL. The role of oocyte organelles in determining developmental competence. Biology. 2017;6(3):E35. http://dx.doi.org/10.3390/biology6030035. PMid:28927010.

Rispoli LA, Payton RR, Gondro C, Saxton AM, Nagle KA, Jenkins BW, Schrick FN, Edwards JL. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production. Reproduction. 2013;146(2):193-207. http://dx.doi.org/10.1530/REP-12-0487. PMid:23744615.

Romanucci M, Marinelli A, Sarli G, Della Salda L. Heat shock protein expression in canine malignant mammary tumors. BMC Cancer. 2006;6(1):171. http://dx.doi.org/10.1186/1471-2407-6-171. PMid:16803633.

Roth Z, Hansen P. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction. 2005;129(2):235-44. http://dx.doi.org/10.1530/rep.1.00394. PMid:15695618.

Roth Z, Hansen P. Sphingosine 1-phosphate protects bovine oocytes from heat shock during maturation. Biol Reprod. 2004;71(6):2072-8. http://dx.doi.org/10.1095/biolreprod.104.031989. PMid:15317688.

Saadeldin IM, Swelum AA-A, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN. Differences between the tolerance of camel oocytes and cumulus cells to acute and chronic hyperthermia. J Therm Biol. 2018;74:47-54. http://dx.doi.org/10.1016/j.jtherbio.2018.03.014. PMid:29801649.

Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Osama A, Shikshaky H, Alfayez M, Alowaimer AN, Magdeldin S. Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. J Adv Res. 2019;22:105-18. http://dx.doi.org/10.1016/j.jare.2019.11.009. PMid:31969994.

Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 2000;101(2):199-210. http://dx.doi.org/10.1016/S0092-8674(00)80830-2. PMid:10786835.

Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol. 2002;92(4):1725-42. http://dx.doi.org/10.1152/japplphysiol.01143.2001. PMid:11896043.

Souza-Cácares M, Fialho A, Silva W, Cardoso C, Pöhland R, Martins M, Melo-Sterza FA. Oocyte quality and heat shock proteins in oocytes from bovine breeds adapted to the tropics under different conditions of environmental thermal stress. Theriogenology. 2019;130:103-10. http://dx.doi.org/10.1016/j.theriogenology.2019.02.039. PMid:30878692.

Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64(3):904-9. http://dx.doi.org/10.1095/biolreprod64.3.904. PMid:11207207.

Tang S, Chen H, Cheng Y, Nasir MA, Kemper N, Bao E. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress. Int J Mol Med. 2016;37(1):56-62. http://dx.doi.org/10.3892/ijmm.2015.2414. PMid:26719858.

Torres-Júnior JRS, Pires MFA, Sá WF, Ferreira AM, Viana JHM, Camargo LSA, Ramos AA, Folhadella IM, Polisseni J, Freitas C, Clemente CAA, Sá MF Fo, Paula-Lopes FF, Baruselli PS. Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 2008;69(2):155-66. http://dx.doi.org/10.1016/j.theriogenology.2007.06.023. PMid:17953981.

Wolfenson D, Roth Z, Meidan R. Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim Reprod Sci. 2000;60-61:535-47. http://dx.doi.org/10.1016/S0378-4320(00)00102-0. PMid:10844222.

Yenuganti VR, Vanselow J. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions. Cell Tissue Res. 2017;368(2):397-403. http://dx.doi.org/10.1007/s00441-017-2571-6. PMid:28154936.

Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction. 2001;121(3):447-54. http://dx.doi.org/10.1530/rep.0.1210447. PMid:11226071.
 


Submitted date:
06/22/2019

Accepted date:
08/07/2020

5f4d06af0e8825480fb9f0d2 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections