Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2019-0106
Animal Reproduction (AR)
Original Article

The interaction of Wnt signaling members with growth factors in cultured granulosa cells

Filiz Tepekoy; Gokhan Akkoyunlu

Downloads: 1
Views: 128

Abstract

Abstract: Wnt family members have recently been distinguished in the adult ovary with potential roles in ovarian function. Though particular growth factors interact with Wnt signaling members in extraovarian cell types, it is unclear whether this interaction is applicable in the granulosa cells. Therefore, the current study aimed to determine the effect of insulin-like growth factor-1 (IGF-I), epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-β) on Wnt ligands WNT2 and WNT4 and Wnt receptor Frizzled-4 (FZD4) protein levels in cultured mouse granulosa cells. Granulosa cells were isolated from antral follicles of adult Balb/C mice and cultured for 24 hours in the presence of 100 ng/mL of IGF-I, or EGF or FGF-β. WNT2, WNT4 and FZD4 protein levels were evaluated through western blotting after the culture process. IGF-I treated granulosa cells had significantly the highest level of WNT2 and WNT4 as well as FZD4 when compared to FGF-β and EGF groups. FGF-β group had a significantly higher level of WNT2, WNT4 and FZD4 expression when compared to EGF group. FZD4 expression was at the highest level in the IGF-I group and this difference was statistically significant for all groups including uncultured cells and vehicle group. In addition, FGF-β was shown to positively affect the adhesion of granulosa cells. This study demonstrates that IGF-I, FGF-β and EGF have differential effects on the expressions of WNT2, WNT4, and FZD4 in cultured mouse granulosa cells, suggesting that particular growth factors related to ovarian function might conduct their roles in the ovary through Wnt signaling.

Keywords

EGF, FGF, FZD, IGF, WNT

References

Aad PY, Echternkamp SE, Sypherd DD, Schreiber NB, Spicer LJ. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems. Biol Reprod. 2012;87(4):79. http://dx.doi.org/10.1095/biolreprod.111.096735. PMid:22811575.

Abedini A, Zamberlam G, Lapointe E, Tourigny C, Boyer A, Paquet M, Hayashi K, Honda H, Kikuchi A, Price C, Boerboom D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. FASEB J. 2016;30(4):1534-47. http://dx.doi.org/10.1096/fj.15-280313. PMid:26667040.

Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, Tucker-Kellogg L, Virshup DM. Wnt proteins synergize to activate beta-catenin signaling. J Cell Sci. 2017;130(9):1532-44. http://dx.doi.org/10.1242/jcs.198093. PMid:28289266.

Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology. 2005;146(1):77-84. http://dx.doi.org/10.1210/en.2004-0588. PMid:15459120.

Baumgarten SC, Convissar SM, Fierro MA, Winston NJ, Scoccia B, Stocco C. IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human Cumulus granulosa cells. J Clin Endocrinol Metab. 2014;99(8):2995-3004. http://dx.doi.org/10.1210/jc.2014-1139. PMid:24848710.

Berisha B, Steffl M, Amselgruber W, Schams D. Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction. 2006;131(2):319-29. http://dx.doi.org/10.1530/rep.1.00798. PMid:16452725.

Boyer A, Lapointe E, Zheng X, Cowan RG, Li H, Quirk SM, DeMayo FJ, Richards JS, Boerboom D. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J. 2010;24(8):3010-25. http://dx.doi.org/10.1096/fj.09-145789. PMid:20371632.

Castañon BI, Stapp AD, Gifford CA, Spicer LJ, Hallford DM, Hernandez Gifford JA. Follicle-stimulating hormone regulation of estradiol production: possible involvement of WNT2 and beta-catenin in bovine granulosa cells. J Anim Sci. 2012;90(11):3789-97. http://dx.doi.org/10.2527/jas.2011-4696. PMid:22696613.

Chassot AA, Bradford ST, Auguste A, Gregoire EP, Pailhoux E, Rooij DG, Schedl A, Chaboissier MC. WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development. 2012;139(23):4461-72. http://dx.doi.org/10.1242/dev.078972. PMid:23095882.

Cheon SS, Nadesan P, Poon R, Alman BA. Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res. 2004;293(2):267-74. http://dx.doi.org/10.1016/j.yexcr.2003.09.029. PMid:14729464.

Conti M, Hsieh M, Park JY, Su YQ. Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol. 2006;20(4):715-23. http://dx.doi.org/10.1210/me.2005-0185. PMid:16051667.

Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C, Capeau J. Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene. 2001;20(2):252-9. http://dx.doi.org/10.1038/sj.onc.1204064. PMid:11313952.

El-Hayek S, Demeestere I, Clarke HJ. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc Natl Acad Sci USA. 2014;111(47):16778-83. http://dx.doi.org/10.1073/pnas.1414648111. PMid:25385589.

Fan HY, O’Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 2010;24(8):1529-42. http://dx.doi.org/10.1210/me.2010-0141. PMid:20610534.

Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin. Proc Natl Acad Sci USA. 2011;108(5):1937-42. http://dx.doi.org/10.1073/pnas.1017063108. PMid:21245303.

Garor R, Abir R, Erman A, Felz C, Nitke S, Fisch B. Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil Steril. 2009;91(5, Suppl):1967-75. http://dx.doi.org/10.1016/j.fertnstert.2008.04.075. PMid:18692802.

Gomez BI, Aloqaily BH, Gifford CA, Hallford DM, Hernandez Gifford JA. ASAS-SSR Triennial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: WNTs role in bovine folliculogenesis and estrogen production. J Anim Sci. 2018;96(7):2977-86. http://dx.doi.org/10.1093/jas/sky135. PMid:29668981.

Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281(32):22429-33. http://dx.doi.org/10.1074/jbc.R600015200. PMid:16793760.

Gospodarowicz D, Bialecki H. Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine, and human origin. Endocrinology. 1979;104(3):757-64. http://dx.doi.org/10.1210/endo-104-3-757. PMid:312195.

Gupta PS, Folger JK, Rajput SK, Lv L, Yao J, Ireland JJ, Smith GW. Regulation and regulatory role of WNT signaling in potentiating FSH action during bovine dominant follicle selection. PLoS One. 2014;9(6):e100201. http://dx.doi.org/10.1371/journal.pone.0100201. PMid:24936794.

Hastie PM, Haresign W. Expression of mRNAs encoding insulin-like growth factor (IGF) ligands, IGF receptors and IGF binding proteins during follicular growth and atresia in the ovine ovary throughout the oestrous cycle. Anim Reprod Sci. 2006;92(3-4):284-99. http://dx.doi.org/10.1016/j.anireprosci.2005.05.022. PMid:16023803.

Holnthoner W, Pillinger M, Groger M, Wolff K, Ashton AW, Albanese C, Neumeister P, Pestell RG, Petzelbauer P. Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J Biol Chem. 2002;277(48):45847-53. http://dx.doi.org/10.1074/jbc.M209354200. PMid:12235165.

Hou Z, Wu Q, Sun X, Chen H, Li Y, Zhang Y, Mori M, Yang Y, Que J, Jiang M. Wnt/Fgf crosstalk is required for the specification of basal cells in the mouse trachea. Development. 2019;146(3):dev171496. http://dx.doi.org/10.1242/dev.171496. PMid:30696710.

Hsieh M, Mulders SM, Friis RR, Dharmarajan A, Richards JS. Expression and localization of secreted frizzled-related protein-4 in the rodent ovary: evidence for selective up-regulation in luteinized granulosa cells. Endocrinology. 2003;144(10):4597-606. http://dx.doi.org/10.1210/en.2003-0048. PMid:12960062.

Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1-24. http://dx.doi.org/10.1210/er.2014-1020. PMid:25202833.

Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by Frizzled. Science. 2012;337(6090):59-64. http://dx.doi.org/10.1126/science.1222879. PMid:22653731.

Jin C, Samuelson L, Cui CB, Sun Y, Gerber DA. MAPK/ERK and Wnt/beta-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells. Biochem Biophys Res Commun. 2011;409(4):803-7. http://dx.doi.org/10.1016/j.bbrc.2011.05.094. PMid:21624348.

Kezele P, Nilsson EE, Skinner MK. Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod. 2005;73(5):967-73. http://dx.doi.org/10.1095/biolreprod.105.043117. PMid:16000551.

Kim-Yip RP, Nystul TG. Wingless promotes EGFR signaling in follicle stem cells to maintain self-renewal. Development. 2018;145(23):dev168716. http://dx.doi.org/10.1242/dev.168716. PMid:30389852.

Kjolby RAS, Truchado-Garcia M, Iruvanti S, Harland RM. Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short range repression in patterning the marginal zone. Development. 2019;146(15):dev179580. http://dx.doi.org/10.1242/dev.179580. PMid:31285353.

Lapointe E, Boerboom D. WNT signaling and the regulation of ovarian steroidogenesis. Front Biosci. 2011;3:276-85. PMid:21196376.

Li J, Luo W, Huang T, Gong Y. Growth differentiation factor 9 promotes follicle-stimulating hormone-induced progesterone production in chicken follicular granulosa cells. Gen Comp Endocrinol. 2019;276:69-76. http://dx.doi.org/10.1016/j.ygcen.2019.03.005. PMid:30851298.

Li L, Ji SY, Yang JL, Li XX, Zhang J, Zhang Y, Hu ZY, Liu YX. Wnt/beta-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Mol Cell Endocrinol. 2014;382(2):915-25. http://dx.doi.org/10.1016/j.mce.2013.11.007. PMid:24246780.

Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20(1):781-810. http://dx.doi.org/10.1146/annurev.cellbio.20.010403.113126. PMid:15473860.

Maman E, Yung Y, Cohen B, Konopnicki S, Dal Canto M, Fadini R, Kanety H, Kedem A, Dor J, Hourvitz A. Expression and regulation of sFRP family members in human granulosa cells. Mol Hum Reprod. 2011;17(7):399-404. http://dx.doi.org/10.1093/molehr/gar010. PMid:21307090.

Matos MH, Lima-Verde IB, Bruno JB, Lopes CA, Martins FS, Santos KD, Rocha RM, Silva JR, Bao SN, Figueiredo JR. Follicle stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro. Reprod Fertil Dev. 2007;19(5):677-84. http://dx.doi.org/10.1071/RD07021. PMid:17601416.

Miller C, Pavlova A, Sassoon DA. Differential expression patterns of Wnt genes in the murine female reproductive tract during development and the estrous cycle. Mech Dev. 1998;76(1-2):91-9. http://dx.doi.org/10.1016/S0925-4773(98)00112-9. PMid:9767131.

Mondschein JS, Schomberg DW. Growth factors modulate gonadotropin receptor induction in granulosa cell cultures. Science. 1981;211(4487):1179-80. http://dx.doi.org/10.1126/science.6258228. PMid:6258228.

Musgrove EA. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer? Breast Cancer Res. 2004;6(2):65-8. http://dx.doi.org/10.1186/bcr737. PMid:14979908.

Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767-79. http://dx.doi.org/10.1038/nrm3470. PMid:23151663.

Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol. 2001;175(1-2):123-30. http://dx.doi.org/10.1016/S0303-7207(01)00391-4. PMid:11325522.

Pan H, Cui H, Liu S, Qian Y, Wu H, Li L, Guan Y, Guan X, Zhang L, Fan HY, Ma Y, Li R, Liu M, Li D. Lgr4 gene regulates corpus luteum maturation through modulation of the WNT-mediated EGFR-ERK signaling pathway. Endocrinology. 2014;155(9):3624-37. http://dx.doi.org/10.1210/en.2013-2183. PMid:24877628.

Parakh TN, Hernandez JA, Grammer JC, Weck J, Hunzicker-Dunn M, Zeleznik AJ, Nilson JH. Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proc Natl Acad Sci USA. 2006;103(33):12435-40. http://dx.doi.org/10.1073/pnas.0603006103. PMid:16895991.

Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol. 2011;358(1):156-67. http://dx.doi.org/10.1016/j.ydbio.2011.07.023. PMid:21806977.

Peluso JJ, Pappalardo A. Progesterone maintains large rat granulosa cell viability indirectly by stimulating small granulosa cells to synthesize basic fibroblast growth factor. Biol Reprod. 1999;60(2):290-6. http://dx.doi.org/10.1095/biolreprod60.2.290. PMid:9915993.

Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA. 2000;97(22):12103-8. http://dx.doi.org/10.1073/pnas.210394297. PMid:11035789.

Price CA. Mechanisms of fibroblast growth factor signaling in the ovarian follicle. J Endocrinol. 2016;228(2):R31-43. http://dx.doi.org/10.1530/JOE-15-0414. PMid:26542145.

Qiao GY, Dong BW, Zhu CJ, Yan CY, Chen BL. Deregulation of WNT2/FZD3/beta-catenin pathway compromises the estrogen synthesis in cumulus cells from patients with polycystic ovary syndrome. Biochem Biophys Res Commun. 2017;493(1):847-54. http://dx.doi.org/10.1016/j.bbrc.2017.07.057. PMid:28709873.

Safian D, Bogerd J, Schulz RW. Igf3 activates beta-catenin signaling to stimulate spermatogonial differentiation in zebrafish. J Endocrinol. 2018;238(3):245-57. http://dx.doi.org/10.1530/JOE-18-0124. PMid:29941503.

Schomberg DW, May JV, Mondschein JS. Interactions between hormones and growth factors in the regulation of granulosa cell differentiation in vitro. J Steroid Biochem. 1983;19(1A):291-5. http://dx.doi.org/10.1016/S0022-4731(83)80039-9. PMid:6411983.

Schuermann Y, Siddappa D, Pansera M, Duggavathi R. Activated receptor tyrosine kinases in granulosa cells of ovulating follicles in mice. Mol Reprod Dev. 2018;85(4):316-24. http://dx.doi.org/10.1002/mrd.22966. PMid:29392781.

Schuijers J, Mokry M, Hatzis P, Cuppen E, Clevers H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. Embo J. 2014;33(2):146-56. http://dx.doi.org/10.1002/embj.201385358. PMid:24413017.

Siegle L, Schwab JD, Kuhlwein SD, Lausser L, Tumpel S, Pfister AS, Kuhl M, Kestler HA. A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS One. 2018;13(3):e0195126. http://dx.doi.org/10.1371/journal.pone.0195126. PMid:29596489.

Silva JR, Figueiredo JR, Van den Hurk R. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology. 2009;71(8):1193-208. http://dx.doi.org/10.1016/j.theriogenology.2008.12.015. PMid:19193432.

Stapp AD, Gomez BI, Gifford CA, Hallford DM, Hernandez Gifford JA. Canonical WNT signaling inhibits follicle stimulating hormone mediated steroidogenesis in primary cultures of rat granulosa cells. PLoS One. 2014;9(1):e86432. http://dx.doi.org/10.1371/journal.pone.0086432. PMid:24466091.

Stocco C, Baumgarten SC, Armouti M, Fierro MA, Winston NJ, Scoccia B, Zamah AM. Genome-wide interactions between FSH and insulin-like growth factors in the regulation of human granulosa cell differentiation. Hum Reprod. 2017;32(4):905-14. http://dx.doi.org/10.1093/humrep/dex002. PMid:28158425.

Tepekoy F, Akkoyunlu G, Demir R. The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. J Assist Reprod Genet. 2015;32(3):337-46. http://dx.doi.org/10.1007/s10815-014-0409-7. PMid:25533332.

Van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205-14. http://dx.doi.org/10.1242/dev.033910. PMid:19736321.

Wang HX, Gillio-Meina C, Chen S, Gong XQ, Li TY, Bai D, Kidder GM. The canonical WNT2 pathway and FSH interact to regulate gap junction assembly in mouse granulosa cells. Biol Reprod. 2013;89(2):39. http://dx.doi.org/10.1095/biolreprod.113.109801. PMid:23843235.

Wang HX, Li TY, Kidder GM. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod. 2010a;82(5):865-75. http://dx.doi.org/10.1095/biolreprod.109.080903. PMid:20107203.

Wang L, Shao YY, Ballock RT. Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of beta-catenin signaling. J Bone Miner Res. 2010b;25(5):1138-46. http://dx.doi.org/10.1002/jbmr.5. PMid:20200966.

Yang P, Roy SK. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles: involvement of a protein kinase C-mediated MAP kinase 3/1 self-activation loop. Biol Reprod. 2006;75(1):149-57. http://dx.doi.org/10.1095/biolreprod.105.050153. PMid:16525034.

Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118-22. http://dx.doi.org/10.1038/nature10598. PMid:22056988.

Zhao J, Taverne MA, Van Der Weijden GC, Bevers MM, Van Den Hurk R. Insulin-like growth factor-I (IGF-I) stimulates the development of cultured rat pre-antral follicles. Mol Reprod Dev. 2001;58(3):287-96. http://dx.doi.org/10.1002/1098-2795(200103)58:3<287::AID-MRD7>3.0.CO;2-G. PMid:11170270.

Zhou J, Kumar TR, Matzuk MM, Bondy C. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol Endocrinol. 1997;11(13):1924-33. http://dx.doi.org/10.1210/mend.11.13.0032. PMid:9415397.

Zhou P, Baumgarten SC, Wu Y, Bennett J, Winston N, Hirshfeld-Cytron J, Stocco C. IGF-I signaling is essential for FSH stimulation of AKT and steroidogenic genes in granulosa cells. Mol Endocrinol. 2013;27(3):511-23. http://dx.doi.org/10.1210/me.2012-1307. PMid:23340251.
 


Submitted date:
08/26/2019

Accepted date:
04/23/2020

5ef5f86b0e8825ff41e5dce5 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections