Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2019-0109
Animal Reproduction (AR)
Short Communication

Characterization of mesenchymal stem cells derived from adipose tissue of a cougar (Puma concolor)

Diana Maritza Echeverry; Pamela Alejandra Asenjo; Daniela Michele Rojas; Constanza Javiera Aguilera; Lleretny Rodríguez-Álvarez; Fidel Ovidio Castro

Downloads: 1
Views: 798

Abstract

Abstract: Adipose derived mesenchymal stem cells (AMSCs) have been isolated from domestic and wild cats. For wild cats, the isolation of AMSCs has been reported in the black-footed cats (Felis nigripes) and guigna (Leopardus guigna). Stromal vascular fraction (SVF) isolated from cougar adipose tissue have been used to restore elbow functionality in the cougar (Puma concolor) but multipotent characteristics of these cells have not been described. The present study describes for the first time the isolation and characterization of mesenchymal stem cells derived from adipose tissue of cougar. AMSCs and fibroblasts from six months female cougar were isolated and cultured in DMEM/F12, supplemented with FBS 10% + 1% Antibiotic/Antifungal + 2.4 mM L-Glutamine + 2.4 mM pyruvate up to passage 5. Expression of pluripotent and surface marker genes was evaluated at mRNA level. Mesodermal differentiation (adipogenic, osteogenic and chondrogenic) was described. AMSCs expressed mRNA of pluripotent genes Oct4, Nanog, Sox2 and Klf4 and surface markers Cd44, Cd90, Cd105 and MHCII. Fibroblasts showed similar mRNA expression with the exception of Sox2. AMSCs obtained from cougar exhibit multipotency features similar to domestic cats MSC, nevertheless, other analyses are required. AMSCs from cougar could be a source of interest for treatment of individuals that remain in captivity or arrive to wildlife rehabilitation centers.

Keywords

cell therapy, feline, Puma concolor, stem cell, wild cat

References

Ambady S, Malcuit C, Kashpur O, Kole D, Holmes WF, Hedblom E, Page RL, Dominko T. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol. 2010;54(11-12):1743-54. http://dx.doi.org/10.1387/ijdb.103192sa. PMid:21136380.

Baltus GA, Kowalski MP, Zhai H, Tutter AV, Quinn D, Wall D, Kadam S. Acetylation of Sox2 induces its nuclear export in embryonic stem cells. Stem Cells. 2009;27(9):2175-84. http://dx.doi.org/10.1002/stem.168. PMid:19591226.

Cabezas J, Lara E, Pacha P, Rojas D, Veraguas D, Saravia F, Rodríguez-Alvarez L, Castro FO. The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reprod Domest Anim. 2014;49(4):550-9. http://dx.doi.org/10.1111/rda.12309. PMid:24754629.

Castro FO, Torres A, Cabezas J, Rodriguez-Alvarez L. Combined use of platelet rich plasma and vitamin C positively affects differentiation in vitro to mesodermal lineage of adult adipose equine mesenchymal stem cells. Res Vet Sci. 2014;96(1):95-101. http://dx.doi.org/10.1016/j.rvsc.2013.12.005. PMid:24377415.

Clark KC, Fierro FA, Ko EM, Walker NJ, Arzi B, Tepper CG, Dahlenburg H, Cicchetto A, Kol A, Marsh L, Murphy WJ, Fazel N, Borjesson DL. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther. 2017;8(1):69. http://dx.doi.org/10.1186/s13287-017-0528-z. PMid:28320483.

Echeverry DM, Rojas DM, Aguilera CJ, Veraguas DM, Cabezas JG, Rodríguez-Álvarez LL, Castro FO. Differentiation and multipotential characteristics of mesenchymal stem cells derived from adipose tissue of an endangered wild cat (leopardus guigna). Austral J Vet Sci. 2019;51(1):17-26. http://dx.doi.org/10.4067/S0719-81322019000100104.

Gómez MC, Qin Q, Biancardi MN, Galiguis J, Dumas C, MacLean RA, Wang G, Pope CE. Characterization and multilineage differentiation of domestic and black-footed cat mesenchymal stromal/stem cells from abdominal and subcutaneous adipose tissue. Cell Reprogram. 2015;17(5):376-92. http://dx.doi.org/10.1089/cell.2015.0040. PMid:26317245.

Holsback L, Cardoso MJL, Fagnani R, Patelli THC. Natural infection by endoparasites among free-living wild animals. Rev Bras Parasitol Vet. 2013;22(2):302-6. http://dx.doi.org/10.1590/S1984-29612013005000018. PMid:23778826.

Kono S, Kazama T, Kano K, Harada K, Uechi M, Matsumoto T. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Vet J. 2014;199(1):88-96. http://dx.doi.org/10.1016/j.tvjl.2013.10.033. PMid:24300011.

Lee BY, Li Q, Song WJ, Chae HK, Kweon K, Ahn JO, Youn HY. Altered properties of feline adipose-derived mesenchymal stem cells during continuous in vitro cultivation. J Vet Med Sci. 2018;80(6):930-8. http://dx.doi.org/10.1292/jvms.17-0563. PMid:29669964.

Lee J, Kim HK, Rho JY, Han YM, Kim J. The human OCT‐4 isoforms differ in their ability to confer self‐renewal. J Biol Chem. 2006;281(44):33554-65. http://dx.doi.org/10.1074/jbc.M603937200. PMid:16951404.

Miller RE, Lamberski N, Calle P, editors. Miller-Fowler’s Zoo and Wild Animal Medicine Current Therapy. Vol. 9. USA: Elsevier Health Sciences; 2018. E-Book.

Page RL, Ambady S, Holmes WF, Vilner L, Kole D, Kashpur O, Huntress V, Vojtic I, Whitton H, Dominko T. Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning Stem Cells. 2009;11(3):417-26 http://dx.doi.org/10.1089/clo.2009.0015.

Rodríguez-alvarez L, Manriquez J, Velasquez A, Castro FO. Constitutive expression of the embryonic stem cell marker OCT4 in bovine somatic donor cells influences blastocysts rate and quality after nucleus transfer. In Vitro Cell Dev Biol Animl. 2013; 49:657-67. http://dx.doi.org/10.1007/s11626-013-9650-0.

Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther. 2013;4(5):133. http://dx.doi.org/10.1186/scrt344. PMid:24405576.

Sato K, Yamawaki-Ogata A, Kanemoto I, Usui A, Narita Y. Isolation and characterization of peripheral blood-derived feline mesenchymal stem cells. Vet J. 2016;216:183-8. http://dx.doi.org/10.1016/j.tvjl.2016.08.009. PMid:27687950.

Thevenet L, Méjean C, Moniot B, Bonneaud N, Galéotti N, Aldrian‐Herrada G, Poulat F, Berta P, Benkirane M, Boizet-Bonhoure B. Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J. 2004;23(16):3336-45. http://dx.doi.org/10.1038/sj.emboj.7600352. PMid:15297880.

Uphoff CC, Drexler HG. Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines. In Vitro Cell Dev Biol Animl. 2002; 38(2):79-85. http://dx.doi.org/10.1290/1071-2690(2002)038<0079:CPAFDO>2.0.CO;2

Uphoff CC, Drexler HG. Detecting Mycoplasma Contamination in Cell Cultures by Polymerase Chain Reaction. In: Langdon SP, editor. Cancer Cell Culture. Methods in Molecular Medicine. USA: Humana Press; 2004:319-326. https://doi.org/10.1385/1-59259-406-9:319

Yadav PS, Kues WA, Herrmann D, Carnwath JW, Niemann H. Bovine ICM derived cells express the Oct4 ortholog. Mol Reprod Dev. 2005;72(2):182-90. http://dx.doi.org/10.1002/mrd.20343. PMid:15973686.
 

5ed7dbfe0e8825ed253700fb animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections