Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2020-0015
Animal Reproduction (AR)
Thematic Section: 36th Annual Meeting of the Association of Embryo Technology in Europe (AETE)

Erasing gametes to write blastocysts: metabolism as the new player in epigenetic reprogramming

Marcella Pecora Milazzotto; Camila Bruna de Lima; Aldcejam Martins da Fonseca Junior; Erika Cristina dos Santos; Jessica Ispada

Downloads: 7
Views: 1204

Abstract

Abstract: Understanding preimplantation embryonic development is crucial for the improvement of assisted reproductive technologies and animal production. To achieve this goal, it is important to consider that gametes and embryos are highly susceptible to environmental changes. Beyond the metabolic adaptation, the dynamic status imposed during follicular growth and early embryogenesis may create marks that will guide the molecular regulation during prenatal development, and consequently impact the offspring phenotype. In this context, metaboloepigenetics has gained attention, as it investigates the crosstalk between metabolism and molecular control, i.e., how substrates generated by metabolic pathways may also act as players of epigenetic modifications. In this review, we present the main metabolic and epigenetic events of pre-implantation development, and how these systems connect to open possibilities for targeted manipulation of reproductive technologies and animal production systems.

Keywords

embryo, metabolism, epigenetic, metaboloepigenetic

References

Agger K, Christensen J, Cloos PA, Helin K. The emerging functions of histone demethylases. Curr Opin Genet Dev. 2008;18(2):159-68. http://dx.doi.org/10.1016/j.gde.2007.12.003. PMid:18281209.

Alves GP, Cordeiro FB, Lima CB, Annes K, Santos ÉC, Ispada J, Fontes PK, Nogueira MFG, Nichi M, Milazzotto MP. Follicular environment as a predictive tool for embryo development and kinetics in cattle. Reprod Fertil Dev. 2019;31(3):451-61. http://dx.doi.org/10.1071/RD18143. PMid:30301510.

Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643-58. http://dx.doi.org/10.1038/nrg.2017.57. PMid:28804139.

Bai H, Li Y, Gao H, Dong Y, Han P, Yu H. Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology. 2016;68(4):849-59. http://dx.doi.org/10.1007/s10616-014-9838-5. PMid:25563599.

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381-95. http://dx.doi.org/10.1038/cr.2011.22. PMid:21321607.

Barbehenn EK, Wales RG, Lowry OH. The Explanation for the Blockade of Glycolysis in Early Mouse Embryos. Proc Natl Acad Sci USA. 1974;71(4):1056-60. http://dx.doi.org/10.1073/pnas.71.4.1056. PMid:4275392.

Barlow DP, Bartolomei MS. Genomic Imprinting in Mammals. Cold Spring Harb Perspect Biol. 2014;6(2):a018382-018382. http://dx.doi.org/10.1101/cshperspect.a018382. PMid:24492710.

Bártová E, Krejčí J, Harničarová A, Galiová G, Kozubek S. Histone Modifications and Nuclear Architecture: A Review. J Histochem Cytochem. 2008;56(8):711-21. http://dx.doi.org/10.1369/jhc.2008.951251. PMid:18474937.

Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY. m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells. Cell Stem Cell. 2014;15(6):707-19. http://dx.doi.org/10.1016/j.stem.2014.09.019. PMid:25456834.

Berg JM, Tymoczko JL, Stryer L, Stryer L. Biochemistry. 5th ed. New York: W.H. Freeman; 2002.

Bokar J, Shambaugh M, Polayes D, Matera A, Rottman F. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233-47. PMid:9409616.

Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003;6(1):84-96. http://dx.doi.org/10.1016/S1472-6483(10)62060-3. PMid:12626148.

Canovas S, Cibelli JB, Ross PJ. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc Natl Acad Sci USA. 2012;109(7):2400-5. http://dx.doi.org/10.1073/pnas.1119112109. PMid:22308433.

Carey BW, Finley LWS, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518(7539):413-6. http://dx.doi.org/10.1038/nature13981. PMid:25487152.

Chen Z, Hagen DE, Ji T, Elsik CG, Rivera RM. Global misregulation of genes largely uncoupled to DNA methylome epimutations characterizes a congenital overgrowth syndrome. Sci Rep. 2017;7(1):12667. http://dx.doi.org/10.1038/s41598-017-13012-z. PMid:28978943.

Cheng X. Structural and Functional Coordination of DNA and Histone Methylation. Cold Spring Harb Perspect Biol. 2014;6(8):a018747-018747. http://dx.doi.org/10.1101/cshperspect.a018747. PMid:25085914.

D’Oto A, Tian Q-W, Davidoff AM, Yang J. Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther. 2016;1(2):34-40. http://dx.doi.org/10.35841/medical-oncology.1.2.34-40. PMid:28149961.

Dantas Machado AC, Zhou T, Rao S, Goel P, Rastogi C, Lazarovici A, Bussemaker HJ, Rohs R. Evolving insights on how cytosine methylation affects protein-DNA binding. Brief Funct Genomics. 2015;14(1):61-73. http://dx.doi.org/10.1093/bfgp/elu040. PMid:25319759.

Daujat S, Weiss T, Mohn F, Lange UC, Ziegler-Birling C, Zeissler U, Lappe M, Schübeler D, Torres-Padilla ME, Schneider R. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol. 2009;16(7):777-81. http://dx.doi.org/10.1038/nsmb.1629. PMid:19561610.

Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA. 2001;98(24):13734-8. http://dx.doi.org/10.1073/pnas.241522698. PMid:11717434.

Delatte B, Deplus R, Fuks F. Playing TET ris with DNA modifications. EMBO J. 2014;33(11):1198-211. http://dx.doi.org/10.15252/embj.201488290. PMid:24825349.

Devreker F. Uptake and release of metabolites in human preimplantation embryos. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 179-89. http://dx.doi.org/10.3109/9780203089712-16.

Dobbs KB, Rodriguez M, Sudano MJ, Ortega MS, Hansen PJ. Dynamics of DNA methylation during Early development of the preimplantation bovine embryo. PLoS One. 2013;8(6):e66230. http://dx.doi.org/10.1371/journal.pone.0066230. PMid:23799080.

Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227(9):3169-77. http://dx.doi.org/10.1002/jcp.24054. PMid:22261928.

Dou X, Boyd-Kirkup JD, McDermott J, Zhang X, Li F, Rong B, Zhang R, Miao B, Chen P, Cheng H, Xue J, Bennett D, Wong J, Lan F, Han JJ. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res. 2019;29(10):1622-34. http://dx.doi.org/10.1101/gr.234021.117. PMid:31537639.

Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, Marjani SL, Chen J, Tian XC. Methylome dynamics of bovine gametes and in vivo early embryos. Front Genet. 2019;10:512. http://dx.doi.org/10.3389/fgene.2019.00512. PMid:31191619.

Dunning KR, Anastasi MR, Zhang VJ, Russell DL, Robker RL. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS One. 2014;9(2):e87327. http://dx.doi.org/10.1371/journal.pone.0087327. PMid:24505284.

Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83(6):909-18. http://dx.doi.org/10.1095/biolreprod.110.084145. PMid:20686180.

Dupont C, Armant D, Brenner C. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351-7. http://dx.doi.org/10.1055/s-0029-1237423. PMid:19711245.

Ettig R, Kepper N, Stehr R, Wedemann G, Rippe K. Dissecting DNA-histone interactions in the nucleosome by molecular dynamics simulations of DNA unwrapping. Biophys J. 2011;101(8):1999-2008. http://dx.doi.org/10.1016/j.bpj.2011.07.057. PMid:22004754.

Evertts AG, Zee BM, DiMaggio PA, Gonzales-Cope M, Coller HA, Garcia BA. Quantitative dynamics of the link between cellular metabolism and histone acetylation. J Biol Chem. 2013;288(17):12142-51. http://dx.doi.org/10.1074/jbc.M112.428318. PMid:23482559.

Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015;10(1):95-108. http://dx.doi.org/10.1021/cb500846u. PMid:25562692.

Feinberg AP. Cancer epigenetics takes center stage. Proc Natl Acad Sci USA. 2001;98(2):392-4. http://dx.doi.org/10.1073/pnas.98.2.392. PMid:11209042.

Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490-5. http://dx.doi.org/10.1016/j.gde.2005.08.002. PMid:16098738.

Fukuda A, Tomikawa J, Miura T, Hata K, Nakabayashi K, Eggan K, Akutsu H, Umezawa A. The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat Commun. 2014;5(1):5464. http://dx.doi.org/10.1038/ncomms6464. PMid:25394724.

Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell. 2014;13(12):1472-83. http://dx.doi.org/10.1128/EC.00189-14. PMid:25326522.

Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? BioEssays. 2015;37(4):364-71. http://dx.doi.org/10.1002/bies.201400155. PMid:25619853.

Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Novershtern N, Rechavi G, Hanna JH. m 6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347(6225):1002-6. http://dx.doi.org/10.1126/science.1261417. PMid:25569111.

Golding MC, Snyder M, Williamson GL, Veazey KJ, Peoples M, Pryor JH, Westhusin ME, Long CR. Histone-lysine N-methyltransferase SETDB1 is required for development of the bovine blastocyst. Theriogenology. 2015;84(8):1411-22. http://dx.doi.org/10.1016/j.theriogenology.2015.07.028. PMid:26279314.

González-Recio O. Epigenetics: a new challenge in the post-genomic era of Livestock. Front Genet. 2012;2. http://dx.doi.org/10.3389/fgene.2011.00106.

Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://dx.doi.org/10.1073/pnas.1321569111. PMid:24591639.

Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389(6649):349-52. http://dx.doi.org/10.1038/38664. PMid:9311776.

Guerif F, McKeegan P, Leese HJ, Sturmey RG. A Simple Approach for COnsumption and RElease (CORE) Analysis of Metabolic Activity in Single Mammalian Embryos. PLoS One. 2013;8(8):e67834. http://dx.doi.org/10.1371/journal.pone.0067834. PMid:23967049.

Guo S-W. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587-607. http://dx.doi.org/10.1093/molehr/gap064. PMid:19651637.

Haaf T. Methylation Dynamics in the Early Mammalian Embryo: Implications of Genome Reprogramming Defects for Development. In: Doerfler W, Böhm P, editors. DNA methylation: development, genetic disease and cancer. Vol. 310. USA: Springer Berlin Heidelberg; 2006. p. 13-22. . http://dx.doi.org/10.1007/3-540-31181-5_2.

Hamatani T, Sh Ko M, Yamada M, Kuji N, Mizusawa Y, Shoji M, Hada T, Asada H, Maruyama T, Yoshimura Y. Global gene expression profiling of preimplantation embryos. Hum Cell. 2006;19(3):98-117. http://dx.doi.org/10.1111/j.1749-0774.2006.00018.x. PMid:17204093.

Hamdi M, Lopera-Vasquez R, Maillo V, Sanchez-Calabuig MJ, Núnez C, Gutierrez-Adan A, Rizos D. Bovine oviductal and uterine fluid support in vitro embryo development. Reprod Fertil Dev. 2018;30(7):935-45. http://dx.doi.org/10.1071/RD17286. PMid:29167013.

Harper JE, Miceli SM, Roberts RJ, Manley JL. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 1990;18(19):5735-41. http://dx.doi.org/10.1093/nar/18.19.5735. PMid:2216767.

Harvey A, Kind K, Thompson J. REDOX regulation of early embryo development. Reproduction. 2002:479-86. http://dx.doi.org/10.1530/rep.0.1230479.

Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron P-F. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018;10(1):17. http://dx.doi.org/10.1186/s13148-018-0450-y. PMid:29449903.

Hou J, Liu L, Lei T, Cui X, An X, Chen Y. Genomic DNA methylation patterns in bovine preimplantation embryos derived from in vitro fertilization. Sci China SER C. 2007;50:56-61. http://dx.doi.org/10.1007/s11427-007-0003-7.

Hsu PJ, Shi H, He C. Epitranscriptomic influences on development and disease. Genome Biol. 2017;18(1):197. http://dx.doi.org/10.1186/s13059-017-1336-6. PMid:29061143.

Hugentobler SA, Diskin MG, Leese HJ, Humpherson PG, Watson T, Sreenan JM, Morris DG. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol Reprod Dev. 2007;74(4):445-54. http://dx.doi.org/10.1002/mrd.20607. PMid:16998855.

Hugentobler SA, Humpherson PG, Leese HJ, Sreenan JM, Morris DG. Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol Reprod Dev. 2008;75(3):496-503. http://dx.doi.org/10.1002/mrd.20760. PMid:17926343.

Huynh NC-N, Everts V, Ampornaramveth RS. Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep. 2017;7:33-40. http://dx.doi.org/10.1016/j.bonr.2017.08.001. PMid:28856178.

Imai S, Guarente L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016;2(1):16017. http://dx.doi.org/10.1038/npjamd.2016.17. PMid:28721271.

Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nat Genet. 2000;26(1):61-3. http://dx.doi.org/10.1038/79189. PMid:10973249.

Ispada J, de Lima CB, Sirard M-A, Fontes PK, Nogueira MFG, Annes K, Milazzotto MP. Genome-wide screening of DNA methylation in bovine blastocysts with different kinetics of development. Epigenetics Chromatin. 2018;11(1):1. http://dx.doi.org/10.1186/s13072-017-0171-z. PMid:29310712.

Ispada J, Fonseca AM Jr, Santos EC, Annes K, Santos OLR, Lima CB, Chitwood JL, Ross PJ, Milazzotto MP. Embryonic metabolism orchestrates epigenetic mechanisms: what can we anticipate from the first cleavages? Reprod Fertil Dev. 2020;32(2):170-1. http://dx.doi.org/10.1071/RDv32n2Ab89.

Iwasaki W, Miya Y, Horikoshi N, Osakabe A, Taguchi H, Tachiwana H, Shibata T, Kagawa W, Kurumizaka H. Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio. 2013;3(1):363-9. http://dx.doi.org/10.1016/j.fob.2013.08.007. PMid:24251097.

Jia L, Li J, He B, Jia Y, Niu Y, Wang C, Zhao R. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries. Sci Rep. 2016;6(1):19436. http://dx.doi.org/10.1038/srep19436. PMid:26758245.

Kalhan SC. One carbon metabolism in pregnancy: impact on maternal, fetal and neonatal health. Mol Cell Endocrinol. 2016;435:48-60. http://dx.doi.org/10.1016/j.mce.2016.06.006. PMid:27267668.

Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 2018;14(5):e1007412. http://dx.doi.org/10.1371/journal.pgen.1007412. PMid:29799838.

Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705. http://dx.doi.org/10.1016/j.cell.2007.02.005. PMid:17320507.

Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311-20. http://dx.doi.org/10.1002/mrd.22037. PMid:22431437.

Kulis M, Queirós AC, Beekman R, Martín-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2013;1829:1161-74. https://doi.org/10.1016/j.bbagrm.2013.08.001.

Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J Biol Chem. 2005;280(18):18361-7. http://dx.doi.org/10.1074/jbc.M500174200. PMid:15659386.

Lazarovici A, Zhou T, Shafer A, Dantas Machado AC, Riley TR, Sandstrom R, Sabo PJ, Lu Y, Rohs R, Stamatoyannopoulos JA, Bussemaker HJ. Probing DNA shape and methylation state on a genomic scale with DNase I. Proc Natl Acad Sci USA. 2013;110(16):6376-81. http://dx.doi.org/10.1073/pnas.1216822110. PMid:23576721.

Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, Jackson E, Aiello NM, Haas NB, Rebbeck TR, Judkins A, Won KJ, Chodosh LA, Garcia BA, Stanger BZ, Feldman MD, Blair IA, Wellen KE. Akt-Dependent Metabolic Reprogramming Regulates Tumor Cell Histone Acetylation. Cell Metab. 2014;20(2):306-19. http://dx.doi.org/10.1016/j.cmet.2014.06.004. PMid:24998913.

Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22(12):3047-50. http://dx.doi.org/10.1093/humrep/dem253. PMid:17956925.

Leite RF, Annes K, Ispada J, de Lima CB, dos Santos ÉC, Fontes PK, Nogueira MFG, Milazzotto MP. Oxidative Stress Alters the Profile of Transcription Factors Related to Early Development on In Vitro Produced Embryos. Oxid Med Cell Longev. 2017;2017:1-14. http://dx.doi.org/10.1155/2017/1502489. PMid:29209446.

Li CH, Gao Y, Wang S, Xu FF, Dai LS, Jiang H, Yu XF, Chen CZ, Yuan B, Zhang JB. Expression pattern of JMJD1C in oocytes and its impact on early embryonic development. Genet Mol Res. 2015;14(4):18249-58. http://dx.doi.org/10.4238/2015.December.23.12. PMid:26782472.

Lim J-H, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, Xiang YK, Puigserver P. Oleic Acid Stimulates Complete Oxidation of Fatty Acids through Protein Kinase A-dependent Activation of SIRT1-PGC1α Complex. J Biol Chem. 2013;288(10):7117-26. http://dx.doi.org/10.1074/jbc.M112.415729. PMid:23329830.

Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X, Zhou C, Yao K, An Q, Zhang Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development. 2018;145(4):dev158261. http://dx.doi.org/10.1242/dev.158261.

Lopera R, Hamdi M, Maillo V, Nunez C, Coy P, Gutierrez-Adan A, Bermejo P, Rizos D. 125 effect of bovine oviductal fluid on development and quality of in vitro-produced bovine embryos. Reprod Fertil Dev. 2015;27(1):154. http://dx.doi.org/10.1071/RDv27n1Ab125.

Lozoya OA, Wang T, Grenet D, Wolfgang TC, Sobhany M, Silva DG, Riadi G, Chancel N, Woychik RP, Santos JH. Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression. Life Sci Alliance 2019;2(1):e201800228. http://dx.doi.org/10.26508/lsa.201800228.

Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16(1):9-17. http://dx.doi.org/10.1016/j.cmet.2012.06.001. PMid:22768835.

Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251-60. http://dx.doi.org/10.1038/38444. PMid:9305837.

Mach J. In the histone zone: the mighty eraser. Plant Cell. 2018;30(1):5-6. http://dx.doi.org/10.1105/tpc.18.00040. PMid:29343503.

McGraw S, Robert C, Massicotte L, Sirard M-A. Quantification of histone acetyltransferase and histone deacetylase transcripts during early bovine embryo development. Biol Reprod. 2003;68(2):383-9. http://dx.doi.org/10.1095/biolreprod.102.005991. PMid:12533400.

Mendel M, Chen K-M, Homolka D, Gos P, Pandey RR, McCarthy AA, Pillai RS. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol Cell. 2018;71(6):986-1000.e11. http://dx.doi.org/10.1016/j.molcel.2018.08.004. PMid:30197299.

Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, Gómez Padilla P, Ables G, Bamman MM, Thalacker-Mercer AE, Nichenametla SN, Locasale JW. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 2015;22(5):861-73. http://dx.doi.org/10.1016/j.cmet.2015.08.024. PMid:26411344.

Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28(8):812-28. http://dx.doi.org/10.1101/gad.234294.113. PMid:24736841.

Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15(5):313-26. http://dx.doi.org/10.1038/nrm3785. PMid:24713629.

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell. 2012;149(7):1635-46. http://dx.doi.org/10.1016/j.cell.2012.05.003. PMid:22608085.

Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 2019;20(10):573-89. http://dx.doi.org/10.1038/s41580-019-0143-1. PMid:31270442.

Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y. Glycolysis-mediated changes in Acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21(3):392-402. http://dx.doi.org/10.1016/j.cmet.2015.02.002. PMid:25738455.

Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F, Matarese F, Stunnenberg HG, Oliviero S. Dnmt3L Antagonizes DNA Methylation at Bivalent Promoters and Favors DNA Methylation at Gene Bodies in ESCs. Cell. 2013;155(1):121-34. http://dx.doi.org/10.1016/j.cell.2013.08.056. PMid:24074865.

Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054-6. http://dx.doi.org/10.1038/4551054a. PMid:18948945.

Okano M, Bell DW, Haber DA, Li E. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell. 1999;99(3):247-57. http://dx.doi.org/10.1016/S0092-8674(00)81656-6. PMid:10555141.

Pacaud R, Sery Q, Oliver L, Vallette FM, Tost J, Cartron P-F. DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: role of the DNMT3L/DNMT3B/p65-NFκB complex in the (de-)methylation of TRAF1. Biochimie. 2014;104:36-49. http://dx.doi.org/10.1016/j.biochi.2014.05.005. PMid:24952347.

Park JS, Jeong YS, Shin ST, Lee K-K, Kang Y-K. Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn. 2007;236(9):2523-33. http://dx.doi.org/10.1002/dvdy.21278. PMid:17676637.

Patil V, Cuenin C, Chung F, Aguilera JRR, Fernandez-Jimenez N, Romero-Garmendia I, Bilbao JR, Cahais V, Rothwell J, Herceg Z. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res. 2019;47(19):10072-85. http://dx.doi.org/10.1093/nar/gkz762. PMid:31665742.

Riddle NC. Heritable generational epigenetic effects through RNA. In: Tollefsbol T, editor. Transgenerational epigenetics. Cambridge: Academic Press; 2014, p. 105-19. http://dx.doi.org/10.1016/B978-0-12-405944-3.00010-6.

Rodriguez-Osorio N, Dogan S, Memili E. Epigenetics of mammalian gamete and embryo development. In: Khatib H, editor. Livestock epigenetics, Oxford, UK: Wiley-Blackwell; 2011. p. 3-25. . http://dx.doi.org/10.1002/9781119949930.ch1.

Ross PJ, Ragina NP, Rodriguez RM, Iager AE, Siripattarapravat K, Lopez-Corrales N, Cibelli JB. Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development. Reproduction. 2008;136(6):777-85. http://dx.doi.org/10.1530/REP-08-0045. PMid:18784248.

Ross PJ, Sampaio RV. Epigenetic remodeling in preimplantation embryos: cows are not big mice. Anim Reprod. 2018;15(3):204-14. http://dx.doi.org/10.21451/1984-3143-AR2018-0068.

Saadeh H, Schulz R. Protection of CpG islands against de novo DNA methylation during oogenesis is associated with the recognition site of E2f1 and E2f2. Epigenetics Chromatin. 2014;7(1):26. http://dx.doi.org/10.1186/1756-8935-7-26. PMid:25478011.

Saini SK, Mangalhara KC, Prakasam G, Bamezai RNK. DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep. 2017;7(1):1525. http://dx.doi.org/10.1038/s41598-017-01743-y. PMid:28484249.

Salilew-Wondim D, Fournier E, Hoelker M, Saeed-Zidane M, Tholen E, Looft C, Neuhoff C, Besenfelder U, Havlicek V, Rings F, Gagné D, Sirard M-A, Robert C, A. Shojaei Saadi H, Gad A, Schellander K, Tesfaye D. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro. PLoS One. 2015;10(11):e0140467. http://dx.doi.org/10.1371/journal.pone.0140467. PMid:26536655.

Sangalli JR, Sampaio RV, del Collado M, da Silveira JC, De Bem THC, Perecin F, Smith LC, Meirelles FV. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Sci Rep. 2018;8(1):13766. http://dx.doi.org/10.1038/s41598-018-31822-7. PMid:30214009.

Santos ÉC, Martinho H, Annes K, Silva T, Soares CA, Leite RF, Milazzotto MP. Raman-based noninvasive metabolic profile evaluation of in vitro bovine embryos. J Biomed Opt. 2016;21(7):75002. http://dx.doi.org/10.1117/1.JBO.21.7.075002. PMid:27385403.

Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos. Curr Biol. 2003;13(13):1116-21. http://dx.doi.org/10.1016/S0960-9822(03)00419-6. PMid:12842010.

Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer. 2005;41(16):2381-402. http://dx.doi.org/10.1016/j.ejca.2005.08.010. PMid:16226460.

Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome.’. Open Biol. 2017;7(5):170077. http://dx.doi.org/10.1098/rsob.170077. PMid:28566301.

Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W. The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells. Mol Cell. 2012;48(6):849-62. http://dx.doi.org/10.1016/j.molcel.2012.11.001. PMid:23219530.

Serefidou M, Venkatasubramani AV, Imhof A. The Impact of One Carbon Metabolism on Histone Methylation. Front Genet. 2019;10:764. http://dx.doi.org/10.3389/fgene.2019.00764. PMid:31555321.

Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Küpers LK, Rifas-Shiman SL, Liu C, Burrows K, Zhao S, Magnus MC, Duijts L, Corpeleijn E, DeMeo DL, Litonjua A, Baccarelli A, Hivert MF, Oken E, Snieder H, Jaddoe V, Nystad W, London SJ, Relton CL, Zuccolo L, Cohorts for Heart and Aging Research in Genomic Epidemiology plus (CHARGE +) methylation alcohol working group. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27-42. http://dx.doi.org/10.2217/epi-2017-0095. PMid:29172695.

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell. 2004;119(7):941-53. http://dx.doi.org/10.1016/j.cell.2004.12.012. PMid:15620353.

Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E. Suppression of Oxidative Stress by -Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science. 2013;339(6116):211-4. http://dx.doi.org/10.1126/science.1227166. PMid:23223453.

Sirard M-A. Distribution and dynamics of mitochondrial DNA methylation in oocytes, embryos and granulosa cells. Sci Rep. 2019;9(1):11937. http://dx.doi.org/10.1038/s41598-019-48422-8. PMid:31417147.

SMART. [homepage on the Internet] Lyon, France: Servier Medical Art; 2020 [cited 2020 Jul 02]. Available from: https://smart.servier.com/.

Stewart MD, Li J, Wong J. Relationship between Histone H3 Lysine 9 Methylation, Transcription Repression, and Heterochromatin Protein 1 Recruitment. Mol Cell Biol. 2005;25(7):2525-38. http://dx.doi.org/10.1128/MCB.25.7.2525-2538.2005. PMid:15767660.

Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway: The pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90(3):927-63. http://dx.doi.org/10.1111/brv.12140. PMid:25243985.

Sturmey R, Reis A, Leese H, McEvoy T. Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development. Reprod Domest Anim. 2009;44(Suppl 3):50-8. http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x. PMid:19660080.

Teperino R, Schoonjans K, Auwerx J. Histone Methyl Transferases and Demethylases; Can They Link Metabolism and Transcription? Cell Metab. 2010;12(4):321-7. http://dx.doi.org/10.1016/j.cmet.2010.09.004. PMid:20889125.

TeSlaa T, Chaikovsky AC, Lipchina I, Escobar SL, Hochedlinger K, Huang J, Graeber TG, Braas D, Teitell MA. α-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells. Cell Metab. 2016;24(3):485-93. http://dx.doi.org/10.1016/j.cmet.2016.07.002. PMid:27476976.

Tran KA, Dillingham CM, Sridharan R. The role of α-ketoglutarate–dependent proteins in pluripotency acquisition and maintenance. J Biol Chem. 2019a;294(14):5408-19. http://dx.doi.org/10.1074/jbc.TM118.000831. PMid:30181211.

Tran KA, Pietrzak SJ, Zaidan NZ, Siahpirani AF, McCalla SG, Zhou AS, Iyer G, Roy S, Sridharan R. Defining Reprogramming Checkpoints from Single-Cell Analyses of Induced Pluripotency. Cell Rep. 2019b;27(6):1726-1741.e5. http://dx.doi.org/10.1016/j.celrep.2019.04.056. PMid:31067459.

Urrego R, Bernal-Ulloa SM, Chavarría NA, Herrera-Puerta E, Lucas-Hahn A, Herrmann D, Winkler S, Pache D, Niemann H, Rodriguez-Osorio N. Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro. Zygote. 2017;25(2):131-40. http://dx.doi.org/10.1017/S096719941600040X. PMid:28137339.

Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics. 2014;9(6):803-15. http://dx.doi.org/10.4161/epi.28711. PMid:24709985.

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. 2009;324(5930):1029-33. http://dx.doi.org/10.1126/science.1160809. PMid:19460998.

Vogelauer M, Krall AS, McBrian MA, Li J-Y, Kurdistani SK. Stimulation of Histone Deacetylase Activity by Metabolites of Intermediary Metabolism. J Biol Chem. 2012;287(38):32006-16. http://dx.doi.org/10.1074/jbc.M112.362467. PMid:22822071.

Wales RG, Du Z. Contribution of the pentose phosphate pathway to glucose utilization by preimplantation sheep embryos. Reprod Fertil Dev. 1993;5(3):329-40. http://dx.doi.org/10.1071/RD9930329. PMid:8272537.

Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, Wang Y, Le R, Wang H, Duan T, Zhang Y, Gao S. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol. 2018;20(5):620-31. http://dx.doi.org/10.1038/s41556-018-0093-4. PMid:29686265.

Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519-30. http://dx.doi.org/10.1085/jgp.8.6.519. PMid:19872213.

Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13(4):270-6. http://dx.doi.org/10.1038/nrm3305. PMid:22395772.

Wongtawan T, Taylor JE, Lawson KA, Wilmut I, Pennings S. Histone H4K20me3 and HP1α are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells. J Cell Sci. 2011;124(Pt 11):1878-90. http://dx.doi.org/10.1242/jcs.080721. PMid:21576353.

Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1-2):45-68. http://dx.doi.org/10.1016/j.cell.2013.12.019. PMid:24439369.

Wu X, Li Y, Xue L, Wang L, Yue Y, Li K, Bou S, Li GP, Yu H. Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos. Zygote. 2011;19(1):31-45. http://dx.doi.org/10.1017/S0967199410000328. PMid:20609268.

Yanes O, Clark J, Wong DM, Patti GJ, Sánchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol. 2010;6(6):411-7. http://dx.doi.org/10.1038/nchembio.364. PMid:20436487.

Zaidi N, Swinnen JV, Smans K. ATP-Citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72(15):3709-14. http://dx.doi.org/10.1158/0008-5472.CAN-11-4112. PMid:22787121.

Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol. 2019a;17(1):67. http://dx.doi.org/10.1186/s12958-019-0509-4. PMid:31420039.

Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell. 2012;149(2):467-82. http://dx.doi.org/10.1016/j.cell.2012.01.056. PMid:22500808.

Zhang K, Smith GW. Maternal control of early embryogenesis in mammals. Reprod Fertil Dev. 2015;27(6):880-96. http://dx.doi.org/10.1071/RD14441. PMid:25695370.

Zhang S, Chen X, Wang F, An X, Tang B, Zhang X, Sun L, Li Z. Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos. Sci Rep. 2016;6(1):30345. http://dx.doi.org/10.1038/srep30345. PMid:27456302.

Zhang Z, He C, Zhang L, Zhu T, Lv D, Li G, Song Y, Wang J, Wu H, Ji P, Liu G. Alpha-ketoglutarate affects murine embryo development through metabolic and epigenetic modulations. Reproduction. 2019b;158(2):123-35. http://dx.doi.org/10.1530/REP-19-0018. PMid:31158818.

Zhou W, Niu Y-J, Nie Z-W, Kim J-Y, Xu Y, Yan C-G, Cui, X-S. Nuclear accumulation of pyruvate dehydrogenase alpha 1 promotes histone acetylation and is essential for zygotic genome activation in porcine embryos. Biochim Biophys Acta Mol Cell Res. 2020;1867(4):118648. http://dx.doi.org/10.1016/j.bbamcr.2020.118648.
 


Submitted date:
02/27/2020

Accepted date:
04/23/2020

5f314cc30e882580253f092a animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections