Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2020-0039
Animal Reproduction (AR)
Original Article

Effect of COQ9 and STAT5A polymorphisms on reproductive performance in a Holstein cow herd in Mexico

Néstor Gerardo Michel-Regalado; Miguel Ángel Ayala-Valdovinos; Jorge Galindo-García; Theodor Duifhuis-Rivera; David Román Sánchez-Chiprés; Mauricio Valencia-Posadas

Downloads: 1
Views: 47

Abstract

Abstract: Coenzyme Q9 (COQ9), a coenzyme Q (CoQ) precursor, is an essential component of the mitochondrial electron transport chain that drives adenosine triphosphate production. COQ9 polymorphism 18:25527339 is characterized by substitution of guanine (allele G) for adenine (allele A), which modifies the function of the protein encoded by the gene. In Holsteins, allele A has been associated with better reproductive performance in terms of the conception rate, number of services per conception (SPC) and days open (DO). The signal transducer and activator of transcription (STAT) protein is a transcription factor activated in the presence of cytokines and growth factors. STAT5A polymorphism 19:42407732 in exon 8 has been associated with higher fertility and embryonic survival rates. The objective of this study was to determine the relationship of COQ9 and STAT5A polymorphisms with reproductive parameters [calving to first heat interval (CFHI), DO and SPC]. Blood samples were taken from 112 lactating Holstein from a herd in México for allele genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). To estimate the association between reproductive parameters and genotypes, a linear mixed-effect model was performed. The COQ9 AG genotype was associated significantly with lower SPC (P<0.05) but not with DO or CFHI. No significant association with any reproductive parameter was found for STAT5A. Our findings suggest that the COQ9 18:25527339 polymorphism is a useful molecular marker for improvement of reproductive performance in dairy herds.

Keywords

Holstein, COQ9 gene, STAT5A gene, fertility

References

Adrien ML, Mattiauda DA, Artegoitia V, Carriquiry M, Motta G, Bentancur O, Meikle A. Nutritional regulation of body condition score at the initiation of the transition period in primiparous and multiparous dairy cows under grazing conditions: milk production, resumption of post-partum ovarian cyclicity and metabolic parameters. Animal. 2012;6(2):292-9. http://dx.doi.org/10.1017/S175173111100142X. PMid:22436187.

Ayala-Valdovinos MA, Galindo-García J, Sánchez-Chiprés D, Duifhuis-Rivera T. Genotyping of friesian horses to detect a hydrocephalus-associated c. 1423C> T mutation in B3GALNT2 using PCR-RFLP and PCR-PIRA methods: frequency in stallion horses in Mexico. Mol Cell Probes. 2017;32:69-71. http://dx.doi.org/10.1016/j.mcp.2016.12.005. PMid:28011345.

Burnett TA, Polsky L, Kaur M, Cerri RL. Effect of estrous expression on timing and failure of ovulation of Holstein dairy cows using automated activity monitors. J Dairy Sci. 2018;101(12):11310-20. http://dx.doi.org/10.3168/jds.2018-15151. PMid:30268619.

Butler ST, Pelton SH, Butler WR. Insulin increases 17β-estradiol production by the dominant follicle of the first postpartum follicle wave in dairy cows. Reproduction. 2004;127(5):537-45. http://dx.doi.org/10.1530/rep.1.00079. PMid:15129009.

Clempson AM, Pollott GE, Brickell JS, Wathes DC. Associations between bovine IGFBP2 polymorphisms with fertility, milk production, and metabolic status in UK dairy cows. Anim Biotechnol. 2012;23(2):101-13. http://dx.doi.org/10.1080/10495398.2011.650775. PMid:22537059.

Diskin MG, Waters SM, Parr MH, Kenny DA. Pregnancy losses in cattle: potential for improvement. Reprod Fertil Dev. 2016;28(1-2):83-93. http://dx.doi.org/10.1071/RD15366. PMid:27062877.

Gröhn YT, Rajala-Schultz PJ. Epidemiology of reproductive performance in dairy cows. Anim Reprod Sci. 2000;60-61:605-14. http://dx.doi.org/10.1016/S0378-4320(00)00085-3. PMid:10844228.

Hax LT, Schneider A, Jacometo CB, Mattei P, da Silva TC, Farina G, Corrêa MN. Association between polymorphisms in somatotropic axis genes and fertility of Holstein dairy cows. Theriogenology. 2017;88:67-72. http://dx.doi.org/10.1016/j.theriogenology.2016.03.044. PMid:27865414.

Homer EM, Derecka K, Webb R, Garnsworthy PC. Mutations in genes involved in oestrous cycle associated expression of oestrus. Anim Reprod Sci. 2013;142(3-4):106-12. http://dx.doi.org/10.1016/j.anireprosci.2013.09.018. PMid:24139696.

Khatib H, Monson RL, Schutzkus V, Kohl DM, Rosa GJM, Rutledge JJ. Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. J Dairy Sci. 2008;91(2):784-93. http://dx.doi.org/10.3168/jds.2007-0669. PMid:18218766.

Khayatzadeh N, Mészáros G, Utsunomiya YT, Schmitz‐Hsu F, Seefried F, Schnyder U, Ferenčaković M, Garcia JF, Curik I, Sölkner J. Effects of breed proportion and components of heterosis for semen traits in a composite cattle breed. J Anim Breed Genet. 2018;135(1):45-53. http://dx.doi.org/10.1111/jbg.12304. PMid:29164741.

Lohman DC, Forouhar F, Beebe ET, Stefely MS, Minogue CE, Ulbrich A, Stefely JA, Sukumar S, Luna-Sánchez M, Jochem A, Lew S, Seetharaman J, Xiao R, Wang H, Westphall MS, Wrobel RL, Everett JK, Mitchell JC, López LC, Coon JJ, Tong L, Pagliarini DJ. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc Natl Acad Sci USA. 2014;111(44):E4697-705. http://dx.doi.org/10.1073/pnas.1413128111. PMid:25339443.

Luna-Sánchez M, Díaz-Casado E, Barca E, Tejada MA, Montilla-García A, Cobos EJ, Escames G, Acuña-Castroviejo D, Quinzii CM, López LC. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7(5):670-87. http://dx.doi.org/10.15252/emmm.201404632. PMid:25802402.

Maillo V, Lopera-Vasquez R, Hamdi M, Gutierrez-Adan A, Lonergan P, Rizos D. Maternal-embryo interaction in the bovine oviduct: evidence from in vivo and in vitro studies. Theriogenology. 2016;86(1):443-50. http://dx.doi.org/10.1016/j.theriogenology.2016.04.060. PMid:27177963.

National Research Council – NRC. Nutrient requirement of dairy cattle. 7th ed. Washington: National Academy Press; 2001.

Oikonomou G, Michailidis G, Kougioumtzis A, Avdi M, Banos G. Effect of polymorphisms at the STAT5A and FGF2 gene loci on reproduction, milk yield and lameness of Holstein cows. Res Vet Sci. 2011;91(2):235-9. http://dx.doi.org/10.1016/j.rvsc.2011.01.009. PMid:21310447.

Ortega MS, Denicol AC, Cole JB, Null DJ, Hansen PJ. Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows. Anim Genet. 2016;47(3):288-97. http://dx.doi.org/10.1111/age.12420. PMid:26923315.

Ortega MS, Wohlgemuth S, Tribulo P, Siqueira LG, Null DJ, Cole JB, Silva MV, Hansen PJ. A single nucleotide polymorphism in COQ9 affects mitochondrial and ovarian function and fertility in Holstein cows. Biol Reprod. 2017;96(3):652-63. http://dx.doi.org/10.1093/biolre/iox004. PMid:28339599.

Shirasuna K, Kawashima C, Murayama C, Aoki Y, Masuda Y, Kida K, Matsui M, Shimizu T, Miyamoto A. Relationships between the first ovulation postpartum and polymorphism in genes relating to function of immunity, metabolism and reproduction in high-producing dairy cows. J Reprod Dev. 2011;57(1):135-42. http://dx.doi.org/10.1262/jrd.10-100T. PMid:21071888.

Tanaka T, Arai M, Ohtani S, Uemura S, Kuroiwa T, Kim S, Kamomae H. Influence of parity on follicular dynamics and resumption of ovarian cycle in postpartum dairy cows. Anim Reprod Sci. 2008;108(1-2):134-43. http://dx.doi.org/10.1016/j.anireprosci.2007.07.013. PMid:17826012.

Teglund S, McKay C, Schuetz E, Van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93(5):841-50. http://dx.doi.org/10.1016/S0092-8674(00)81444-0. PMid:9630227.

Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660(1-2):171-99. http://dx.doi.org/10.1016/j.bbamem.2003.11.012. PMid:14757233.

University of Alberta – UAlberta. POPGENE© version 1.32. Alberta: Molecular Biology and Biotechnology Centre, University of Alberta and Center for International Forestry Research; 1997.

Veerkamp RF, Beerda B, Van der Lende T. Effects of genetic selection for milk yield on energy balance, levels of hormones, and metabolites in lactating cattle, and possible links to reduced fertility. Livest Prod Sci. 2003;83(2-3):257-75. http://dx.doi.org/10.1016/S0301-6226(03)00108-8.

Zolini AM, Ortiz WG, Estrada-Cortes E, Ortega MS, Dikmen S, Sosa F, Giordano JO, Hansen PJ. Interactions of human chorionic gonadotropin with genotype and parity on fertility responses of lactating dairy cows. J Dairy Sci. 2019;102(1):846-56. http://dx.doi.org/10.3168/jds.2018-15358. PMid:30447974.
 


Submitted date:
04/20/2020

Accepted date:
07/01/2020

5f314d940e88254e243f092a animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections