Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2021-0048
Animal Reproduction (AR)
REVIEW ARTICLE

Possible impact of neutrophils on immune responses during early pregnancy in ruminants

Mariani Farias Fiorenza; Carolina dos Santos Amaral; Adriana Raquel de Almeida da Anunciação; Valério Valdetar Marques Portela; Mohammed Ali Marey; Akio Miyamoto; Alfredo Quites Antoniazzi

Downloads: 0
Views: 51

Abstract

The interaction between early embryo and maternal immune system for the establishment of pregnancy is the focus of several studies; however, it remains unclear. The maternal immune response needs to keep a balance between avoiding any damage to the conceptus and maintaining its function in combating microbes as well. When conceptus-maternal crosstalk cannot achieve this balance, pregnancy losses might occur. Intercommunication between mother and conceptus is fundamental during early pregnancy to dictate the outcome of pregnancy. In ruminants, the embryo reacts with the maternal system mainly via interferon tau (IFNT) release. IFNT can act locally on the embryo and endometrial cells and systemically in several tissues and cells to regulate their response via the expression of interferon-stimulated genes (ISGs). Also, IFNT can induce the expression of inflammatory-related genes in immune cells. Day 7 embryo induces a shift in the maternal immune response towards anti-inflammatory (Th2) immune responses. During maternal recognition of pregnancy, peripheral mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) express markers that configure an anti-inflammatory response. However, PMNs response is more sensitive to the effects of IFNT. PMNs are more likely to express interferon-stimulated genes (ISGs), transforming growth factor-beta (TGFB), interleukin 10 (IL10), and arginase-1 (ARG1), configuring one of the most rapid immune responses to early pregnancy. This review focus on the local and peripheral immune responses during early pregnancy in ruminants, mainly the PMNs function in the immune system.

Keywords

innate cells, interferon tau, inflammation, cattle

References

Akthar I, Suarez SS, Morillo VA, Sasaki M, Ezz MA, Takahashi K, Shimada M, Marey MA, Miyamoto A. Sperm enter glands of preovulatory bovine endometrial explants and initiate inflammation. Reproduction. 2020;159(2):181-92. http://dx.doi.org/10.1530/REP-19-0414.

Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Llurba E, Gris JM. tumor necrosis factor-alpha and pregnancy: focus on biologics. an updated and comprehensive review. Clin Rev Allergy Immunol. 2017;53(1):40-53. http://dx.doi.org/10.1007/s12016-016-8596-x. PMid:28054230.

Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3):266-71. http://dx.doi.org/10.1038/ni1037. PMid:14758358.

Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med. 2013;19(5):548-56. http://dx.doi.org/10.1038/nm.3160. PMid:23652115.

Arosh JA, Banu SK, Kimmins S, Chapdelaine P, Maclaren LA, Fortier MA. Effect of interferon-tau on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. Endocrinology. 2004;145(11):5280-93. http://dx.doi.org/10.1210/en.2004-0587. PMid:15308607.

Asselin E, Lacroix D, Fortier MA. IFN-tau increases PGE2 production and COX-2 gene expression in the bovine endometrium in vitro. Mol Cell Endocrinol. 1997;132(1-2):117-26. http://dx.doi.org/10.1016/S0303-7207(97)00128-7. PMid:9324053.

Bai H, Sakurai T, Fujiwara H, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod Med Biol. 2012;11(3):109-16. http://dx.doi.org/10.1007/s12522-011-0117-2. PMid:29699116.

Basu S, Hodgson G, Zhang H-H, Katz M, Quilici C, Dunn AR. “Emergency” granulopoiesis in G-CSF–deficient mice in response to Candida albicans infection. Blood. 2000;95(12):3725-33. http://dx.doi.org/10.1182/blood.V95.12.3725.012k06_3725_3733. PMid:10845903.

Bauersachs S, Ulbrich SE, Gross K, Schmidt SEM, Meyer HHD, Wenigerkind H, Vermehren M, Sinowatz F, Blum H, Wolf E. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction. 2006;132(2):319-31. http://dx.doi.org/10.1530/rep.1.00996. PMid:16885540.

Bazer FW, Thatcher WW. Chronicling the discovery of interferon tau. Reproduction. 2017;154(5):F11-20. http://dx.doi.org/10.1530/REP-17-0257. PMid:28747540.

Bazer FW, Vallet JL, Roberts RM, Sharp DC, Thatcher WW. Role of conceptus secretory products in establishment of pregnancy. J Reprod Fertil. 1986;76(2):841-50. http://dx.doi.org/10.1530/jrf.0.0760841. PMid:3517318.

Bazer FW, Ying W, Wang X, Dunlap KA, Zhou B, Johnson GA, Wu G. The many faces of interferon tau. Amino Acids. 2015;47(3):449-60. http://dx.doi.org/10.1007/s00726-014-1905-x. PMid:25557050.

Billingham RE, Brent L, Medawar PB. “Actively acquired tolerance” of foreign cells. Nature. 1953;172(4379):603-6. http://dx.doi.org/10.1038/172603a0. PMid:13099277.

Bilotas MA, Olivares CN, Ricci AG, Baston JI, Bengochea TS, Meresman GF, Barañao RI. Interplay between Endometriosis and Pregnancy in a Mouse Model. PLoS One. 2015;10(4):e0124900. http://dx.doi.org/10.1371/journal.pone.0124900. PMid:25915402.

Blitek A, Morawska E, Ziecik AJ. Regulation of expression and role of leukemia inhibitory factor and interleukin-6 in the uterus of early pregnant pigs. Theriogenology. 2012;78(5):951-64. http://dx.doi.org/10.1016/j.theriogenology.2012.05.016. PMid:22920593.

Bott RC, Ashley RL, Henkes LE, Antoniazzi AQ, Bruemmer JE, Niswender GD, Bazer FW, Spencer TE, Smirnova NP, Anthony RV, Hansen TR. Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biol Reprod. 2010;82(4):725-35. http://dx.doi.org/10.1095/biolreprod.109.079467. PMid:20042537.

Bridi A, Perecin F, Silveira JCD. Extracellular vesicles mediated early embryo–maternal interactions. Int J Mol Sci. 2020;21(3):1163. http://dx.doi.org/10.3390/ijms21031163. PMid:32050564.

Brooks K, Burns G, Spencer TE. Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J Anim Sci Biotechnol. 2014;5(1):53. http://dx.doi.org/10.1186/2049-1891-5-53. PMid:25810904.

Brooks K, Spencer TE. Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus. Biol Reprod. 2015;92(2):47. http://dx.doi.org/10.1095/biolreprod.114.124156. PMid:25505203.

Casbon A-J, Reynaud D, Park C, Khuc E, Gan DD, Schepers K, Passegué E, Werb Z. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA. 2015;112(6):E566-75. http://dx.doi.org/10.1073/pnas.1424927112. PMid:25624500.

Costantini C, Cassatella MA. The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J Leukoc Biol. 2011;89(2):221-33. http://dx.doi.org/10.1189/jlb.0510250. PMid:20682626.

Crouch SP, Crocker IP, Fletcher J. The effect of pregnancy on polymorphonuclear leukocyte function. J Immunol. 1995; 155(11):5436-43. PMID: 7594561.

Dalmaso de Melo G, Mello BP, Ferreira CA, Souto Godoy CA Fo, Rocha CC, Silva AG, Reese ST, Madureira EH, Pohler KG, Pugliesi G. Applied use of interferon-tau stimulated genes expression in polymorphonuclear cells to detect pregnancy compared to other early predictors in beef cattle. Theriogenology. 2020;152:94-105. http://dx.doi.org/10.1016/j.theriogenology.2020.04.001. PMid:32387553.

Degrelle SA, Campion E, Cabau C, Piumi F, Reinaud P, Richard C, Renard JP, Hue I. Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev Biol. 2005;288(2):448-60. http://dx.doi.org/10.1016/j.ydbio.2005.09.043. PMid:16289134.

Demmers KJ, Derecka K, Flint A. Trophoblast interferon and pregnancy. Reproduction. 2001;121(1):41-9. http://dx.doi.org/10.1530/rep.0.1210041. PMid:11226028.

Diskin MG, Parr MH, Morris DG. Embryo death in cattle: an update. Reprod Fertil Dev. 2011;24(1):244-51. http://dx.doi.org/10.1071/RD11914. PMid:22394965.

Elesh IF, Marey MA, Zinnah MA, Akthar I, Kawai T, Naim F, Goda W, Rawash ARA, Sasaki M, Shimada M, Miyamoto A. Peptidoglycan switches off the TLR2-Mediated sperm recognition and triggers sperm localization in the bovine endometrium. Front Immunol. 2021;11:619408. http://dx.doi.org/10.3389/fimmu.2020.619408. PMid:33643300.

Elliott LA, Doherty GA, Sheahan K, Ryan EJ. Human tumor-infiltrating myeloid cells: phenotypic and functional diversity. Front Immunol. 2017;8:86. http://dx.doi.org/10.3389/fimmu.2017.00086. PMid:28220123.

Ezashi T, Imakawa K. Transcriptional control of IFNT expression. Reproduction. 2017;154(5):F21-31. http://dx.doi.org/10.1530/REP-17-0330. PMid:28982936.

Ezz MA, Marey MA, Elweza AE, Kawai T, Heppelmann M, Pfarrer C, Balboula AZ, Montaser A, Imakawa K, Zaabel SM, Shimada M, Miyamoto A. TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One. 2019;14(4):e0214516. http://dx.doi.org/10.1371/journal.pone.0214516. PMid:30995239.

Fair T. Embryo maternal immune interactions in cattle. Anim Reprod. 2016;13(3):346-54. http://dx.doi.org/10.21451/1984-3143-AR877.

Farin CE, Cross JC, Tindle NA, Murphy CN, Farin PW, Roberts RM. Induction of trophoblastic interferon expression in ovine blastocysts after treatment with double-stranded RNA. J Interferon Res. 1991;11(3):151-7. http://dx.doi.org/10.1089/jir.1991.11.151. PMid:1919074.

Farin CE, Imakawa K, Roberts RM. In situ localization of mRNA for the interferon, ovine trophoblast protein-1, during early embryonic development of the sheep. Mol Endocrinol. 1989;3(7):1099-107. http://dx.doi.org/10.1210/mend-3-7-1099. PMid:2797003.

Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AAR, Wauters E, Walmsley S, Prenen H, Granot Z, Casazza A, Mazzone M. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522(7556):349-53. http://dx.doi.org/10.1038/nature14407. PMid:25985180.

Fiorenza MF, Marey MA, Rashid MB, Zinnah MA, Ma D, Morillo VA, Kusama K, Shimada M, Imakawa K, Antoniazzi AQ, Miyamoto A. Neutrophils recognize and amplify IFNT signals derived from day 7 bovine embryo for stimulation of ISGs expression in vitro: a possible implication for the early maternal recognition of pregnancy. Biochem Biophys Res Commun. 2021;553:37-43. http://dx.doi.org/10.1016/j.bbrc.2021.03.037. PMid:33765557.

Forde N, Lonergan P. Interferon-tau and fertility in ruminants. Reproduction. 2017;154(5):F33-43. http://dx.doi.org/10.1530/REP-17-0432. PMid:28887326.

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of Tumor-Associated Neutrophil (TAN) Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183-94. http://dx.doi.org/10.1016/j.ccr.2009.06.017. PMid:19732719.

Geisert RD, Zavy MT, Biggers BG, Garrett JE, Wettemann RP. Characterization of the uterine environment during early conceptus expansion in the bovine. Anim Reprod Sci. 1988;16(1):11-25. http://dx.doi.org/10.1016/0378-4320(88)90003-6.

Germain SJ, Sacks GP, Soorana SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007;178(9):5949-56. http://dx.doi.org/10.4049/jimmunol.178.9.5949. PMid:17442979.

Giaglis S, Stoikou M, Grimolizzi F, Subramanian BY, van Breda SV, Hoesli I, Lapaire O, Hasler P, Than NG, Hahn S. Neutrophil migration into the placenta: good, bad or deadly? Cell Adh Migr. 2016;10(1-2):208-25. http://dx.doi.org/10.1080/19336918.2016.1148866. PMid:26933824.

Gilbert RO. The effects of endometritis on the establishment of pregnancy in cattle. Reprod Fertil Dev. 2011;24(1):252-7. http://dx.doi.org/10.1071/RD11915. PMid:22394966.

Godkin JD, Bazer FW, Thatcher WW, Roberts RM. Proteins released by cultured Day 15-16 conceptuses prolong luteal maintenance when introduced into the uterine lumen of cyclic ewes. J Reprod Fertil. 1984;71(1):57-64. http://dx.doi.org/10.1530/jrf.0.0710057. PMid:6726688.

González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125-35. http://dx.doi.org/10.1038/nri3133. PMid:22222875.

Granot Z, Jablonska J. Distinct functions of neutrophil in cancer and its regulation. Mediators Inflamm. 2015;2015:701067. http://dx.doi.org/10.1155/2015/701067. PMid:26648665.

Green JC, Okamura CS, Poock SE, Lucy MC. Measurement of interferon-tau (IFN-t) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18-20d after insemination in dairy cattle. Anim Reprod Sci. 2010;121(1-2):24-33. http://dx.doi.org/10.1016/j.anireprosci.2010.05.010. PMid:20554404.

Gupta AK, Rusterholz C, Holzgreve W, Hahn S. Syncytiotrophoblast micro-particles do not induce apoptosis in peripheral T lymphocytes, but differ in their activity depending on the mode of preparation. J Reprod Immunol. 2005;68(1-2):15-26. http://dx.doi.org/10.1016/j.jri.2005.05.003. PMid:16233919.

Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu L-C, Wang GG, Kamps MP, Raz E, Wagner H, Häcker G, Mann M, Karin M. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature. 2006;439(7073):204-7. http://dx.doi.org/10.1038/nature04369. PMid:16306937.

Han H, Austin KJ, Rempel LA, Hansen TR. Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. J Endocrinol. 2006;191(2):505-12. http://dx.doi.org/10.1677/joe.1.07015. PMid:17088421.

Hannan NJ, Salamonsen LA. Role of chemokines in the endometrium and in embryo implantation. Curr Opin Obstet Gynecol. 2007;19(3):266-72. http://dx.doi.org/10.1097/GCO.0b013e328133885f. PMid:17495644.

Hansen TR, Sinedino LDP, Spencer TE. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction. 2017;154(5):F45-59. http://dx.doi.org/10.1530/REP-17-0315. PMid:28982937.

Heifets L. Centennial of Metchnikoff’s discovery. J Reticuloendothel Soc. 1982;31(5):381-91. PMid:6750115.

Higashisaka K, Nakashima A, Iwahara Y, Aoki A, Nakayama M, Yanagihara I, Lin Y, Nagano K, Tsunoda SI, Saito S, Yoshioka Y, Tsutsumi Y. Neutrophil depletion exacerbates pregnancy complications, including placental damage, induced by silica nanoparticles in mice. Front Immunol. 2018;9:1850. http://dx.doi.org/10.3389/fimmu.2018.01850. PMid:30135689.

Imakawa K, Anthony R, Kazemi M, Marotti K, Polites H, Roberts R. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature. 1987;330(6146):377-9. http://dx.doi.org/10.1038/330377a0. PMid:2446135.

Imakawa K, Nagaoka K, Nojima H, Hara Y, Christenson RK. Changes in immune cell distribution and IL-10 production are regulated through endometrial IP-10 expression in the goat uterus. Am J Reprod Immunol. 2005;53(1):54-64. http://dx.doi.org/10.1111/j.1600-0897.2004.00243.x. PMid:15667526.

Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest. 2010;120(4):1151-64. http://dx.doi.org/10.1172/JCI37223. PMid:20237412.

Khabar KSA, Young HA. Post-transcriptional control of the interferon system. Biochimie. 2007;89(6-7):761-9. http://dx.doi.org/10.1016/j.biochi.2007.02.008. PMid:17408842.

Kizaki K, Shichijo-Kizaki A, Furusawa T, Takahashi T, Hosoe M, Hashizume K. Differential neutrophil gene expression in early bovine pregnancy. Reprod Biol Endocrinol. 2013;11:6. http://dx.doi.org/10.1186/1477-7827-11-6. PMid:23384108.

Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-75. http://dx.doi.org/10.1038/nri3399. PMid:23435331.

Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, Bangham CR, Taylor GP, Herath S, Choi BS, Soler G, Teoh T, Modolell M, Müller I. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol. 2007;37(4):935-45. http://dx.doi.org/10.1002/eji.200636542. PMid:17330821.

Le Gros G, Ben-Sasson SZ, Seder R, Finkelman FD, Paul WE. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990;172(3):921-9. http://dx.doi.org/10.1084/jem.172.3.921. PMid:2117636.

Leaman DW, Roberts RM. Genes for the trophoblast interferons in sheep, goat, and musk ox and distribution of related genes among mammals. J Interferon Res. 1992;12(1):1-11. http://dx.doi.org/10.1089/jir.1992.12.1. PMid:1374107.

Leber A, Teles A, Zenclussen AC. Regulatory T cells and their role in pregnancy. Am J Reprod Immunol. 2010;63(6):445-59. http://dx.doi.org/10.1111/j.1600-0897.2010.00821.x. PMid:20331584.

Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16(1):137-61. http://dx.doi.org/10.1146/annurev.immunol.16.1.137. PMid:9597127.

Makhseed M, Raghupathy R, Azizieh F, Al-Azemi MMK, Hassan NA, Bandar A. Mitogen-induced cytokine responses of maternal peripheral blood lymphocytes indicate a differential Th-Type bias in normal pregnancy and pregnancy failure. Am J Reprod Immunol. 1999;42(5):273-81. http://dx.doi.org/10.1111/j.1600-0897.1999.tb00101.x. PMid:10584981.

Manjari P, Reddi S, Alhussien M, Mohammed S, De S, Mohanty AK, Sivalingam J, Dang AK. Neutrophil gene dynamics and plasma cytokine levels in dairy cattle during peri-implantation period. Vet Immunol Immunopathol. 2016;173:44-9. http://dx.doi.org/10.1016/j.vetimm.2016.03.017. PMid:27090626.

Mansouri-Attia N, Oliveira LJ, Forde N, Fahey AG, Browne JA, Roche JF, Sandra O, Reinaud P, Lonergan P, Fair T. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in Cattle1. Biol Reprod. 2012;87(5):123. http://dx.doi.org/10.1095/biolreprod.112.101121. PMid:23034158.

Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-31. http://dx.doi.org/10.1038/nri3024. PMid:21785456.

Martal JL, Chêne NM, Huynh LP, L’Haridon RM, Reinaud PB, Guillomot MW, Charlier MA, Charpigny SY. IFN-tau: A novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie. 1998;80(8-9):755-77. http://dx.doi.org/10.1016/S0300-9084(99)80029-7. PMid:9865498.

Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9(1):181-218. http://dx.doi.org/10.1146/annurev-pathol-020712-164023. PMid:24050624.

Melo GD, Pinto LMF, Rocha CC, Motta IG, Silva LA, da Silveira JC, Gonella-Diaza AM, Binelli M, Pugliesi G. Type I interferon receptors and interferon-τ-stimulated genes in peripheral blood mononuclear cells and polymorphonuclear leucocytes during early pregnancy in beef heifers. Reprod Fertil Dev. 2020;32(11):953-66. http://dx.doi.org/10.1071/RD19430. PMid:32646539.

Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother. 2013;62(11):1745-56. http://dx.doi.org/10.1007/s00262-013-1476-9. PMid:24092389.

Mohammed S, Aarti K, Kalyan A, Alhussien MN, Manjari P, Yadav M, Sheikh AA, De S, Mohanty AK, Dang AK. Fluctuation in the number, type and activity of blood neutrophils in cows exhibiting successful and unsuccessful completion of gestation cycle. Biol Rhythm Res. 2017;48(6):855-65. http://dx.doi.org/10.1080/09291016.2017.1311984.

Mor G, Abrahams VM. Immunology of implantation. Immunol Allergy Clin North Am. 2002;22(3):545-65. http://dx.doi.org/10.1016/S0889-8561(02)00009-7.

Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425-33. http://dx.doi.org/10.1111/j.1600-0897.2010.00836.x. PMid:20367629.

Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348-57. PMid:2419430.

Nadkarni S, Smith J, Sferruzzi-Perri AN, Ledwozyw A, Kishore M, Haas R, Mauro C, Williams DJ, Farsky SH, Marelli-Berg FM, Perretti M. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proc Natl Acad Sci USA. 2016;113(52):E8415-24. http://dx.doi.org/10.1073/pnas.1611944114. PMid:27956610.

Nakagome K, Okunishi K, Imamura M, Harada H, Matsumoto T, Tanaka R, Miyazaki J, Yamamoto K, Dohi M. IFN-gamma attenuates antigen-induced overall immune response in the airway as a Th1-type immune regulatory cytokine. J Immunol. 2009;183(1):209-20. http://dx.doi.org/10.4049/jimmunol.0802712. PMid:19542432.

Ohtani S, Okuda K, Nishimura K, Mohri S. Histological changes in bovine endometrium during the estrous cycle. Theriogenology. 1993;39(5):1033-42. http://dx.doi.org/10.1016/0093-691X(93)90004-O. PMid:16727274.

Oliveira JF, Henkes LE, Ashley RL, Purcell SH, Smirnova NP, Veeramachaneni DNR, Anthony RV, Hansen TR. Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-τ release from the uterine vein. Endocrinology. 2008;149(3):1252-9. http://dx.doi.org/10.1210/en.2007-0863. PMid:18063687.

Oliveira LJ, Hansen PJ. Deviations in populations of peripheral blood mononuclear cells and endometrial macrophages in the cow during pregnancy. Reproduction. 2008;136(4):481-90. http://dx.doi.org/10.1530/REP-08-0218. PMid:18635742.

Oliveira LJ, Mansouri-Attia N, Fahey AG, Browne J, Forde N, Roche JF, Lonergan P, Fair T. Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS One. 2013;8(10):e75571. http://dx.doi.org/10.1371/journal.pone.0075571. PMid:24204576.

Ott TL, Kamat MM, Vasudevan S, Townson DH, Pate JL. Maternal immune responses to conceptus signals during early pregnancy in ruminants. Anim Reprod. 2014;11:237-45.

Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, Cosmi L, Lunardi C, Annunziato F, Romagnani S, Cassatella MA. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010;115(2):335-43. http://dx.doi.org/10.1182/blood-2009-04-216085. PMid:19890092.

Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers J-W, Ulfman LH, Leenen LP, Pickkers P, Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1):327-36. http://dx.doi.org/10.1172/JCI57990. PMid:22156198.

Pillay J, Tak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci. 2013;70(20):3813-27. http://dx.doi.org/10.1007/s00018-013-1286-4. PMid:23423530.

Pontzer CH, Torres BA, Vallet JL, Bazer FW, Johnson HM. Antiviral activity of the pregnancy recognition hormone ovine trophoblast protein-1. Biochem Biophys Res Commun. 1988;152(2):801-7. http://dx.doi.org/10.1016/S0006-291X(88)80109-8. PMid:3365252.

Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and gestational disorders. J Reprod Immunol. 2012;95(1-2):1-14. http://dx.doi.org/10.1016/j.jri.2012.05.004. PMid:22819759.

Pruijt JFM, Verzaal P, van Os R, de Kruijf E-JFM, van Schie MLJ, Mantovani A, Vecchi A, Lindley IJ, Willemze R, Starckx S, Opdenakker G, Fibbe WE. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA. 2002;99(9):6228-33. http://dx.doi.org/10.1073/pnas.092112999. PMid:11983913.

Raghupathy RT. 1-type immunity is incompatible with successful pregnancy. Immunol Today. 1997;18(10):478-82. http://dx.doi.org/10.1016/S0167-5699(97)01127-4. PMid:9357139.

Rashid MB, Talukder AK, Kusama K, Haneda S, Takedomi T, Yoshino H, Moriyasu S, Matsui M, Shimada M, Imakawa K, Miyamoto A. Evidence that interferon-tau secreted from Day-7 embryo in vivo generates anti-inflammatory immune response in the bovine uterus. Biochem Biophys Res Commun. 2018;500(4):879-84. http://dx.doi.org/10.1016/j.bbrc.2018.04.178. PMid:29702095.

Reinhard G, Noll A, Schlebusch H, Mallmann P, Ruecker AV. Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem Biophys Res Commun. 1998;245(3):933-8. http://dx.doi.org/10.1006/bbrc.1998.8549. PMid:9588218.

Roberts R, Chen Y, Ezashi T, Walker A. Interferons and Maternal-Conceptus dialog in mammals. Semin Cell Dev Biol. 2008;19(2):170-7. http://dx.doi.org/10.1016/j.semcdb.2007.10.007. PMid:18032074.

Roberts RM. A novel group of interferons associated with the early ovine and bovine embryo. J Interferon Res. 1989;9(4):373-8. http://dx.doi.org/10.1089/jir.1989.9.373. PMid:2666529.

Rocha CC, da Silva Andrade SC, de Melo GD, Motta IG, Coutinho LL, Gonella-Diaza AM, Binelli M, Pugliesi G. Early pregnancy-induced transcripts in peripheral blood immune cells in Bos indicus heifers. Sci Rep. 2020;10(1):1-15. http://dx.doi.org/10.1038/s41598-020-70616-8. PMid:32792605.

Rocha CC, Silveira JC, Forde N, Binelli M, Pugliesi G. Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim Reprod. 2021;18(1):e20200048. http://dx.doi.org/10.1590/1984-3143-ar2020-0048. PMid:34122650.

Romero JJ, Antoniazzi AQ, Nett TM, Ashley RL, Webb BT, Smirnova NP, Bott RC, Bruemmer JE, Bazer FW, Anthony RV, Hansen TR. Temporal release, paracrine and endocrine actions of ovine conceptus-derived interferon-tau during early pregnancy. Biol Reprod. 2015;93(6):146. http://dx.doi.org/10.1095/biolreprod.115.132860. PMid:26559679.

Romero R, Espinoza J, Gonçalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317-26. http://dx.doi.org/10.1016/j.siny.2006.05.001. PMid:16839830.

Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, Ariel A, Hovav AH, Henke E, Fridlender ZG, Granot Z. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562-73. http://dx.doi.org/10.1016/j.celrep.2014.12.039. PMid:25620698.

Sakumoto R, Hayashi K-G, Takahashi T. Different expression of PGE synthase, PGF receptor, TNF, Fas and oxytocin in the bovine corpus luteum of the estrous cycle and pregnancy. Reprod Biol. 2014;14(2):115-21. http://dx.doi.org/10.1016/j.repbio.2013.12.003. PMid:24856470.

Sandra O, Constant F, Vitorino Carvalho A, Eozénou C, Valour D, Mauffré V, Hue I, Charpigny G. Maternal organism and embryo biosensoring: insights from ruminants. J Reprod Immunol. 2015;108:105-13. http://dx.doi.org/10.1016/j.jri.2014.12.005. PMid:25617112.

Sartori R, Sartor-Bergfelt R, Mertens SA, Guenther JN, Parrish JJ, Wiltbank MC. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J Dairy Sci. 2002;85(11):2803-12. https://doi.org/10.3168/jds.S0022-0302(02)74367-1. PMID: 12487447.

Sheikh AA, Hooda OK, Dang AK. Interferon tau stimulated gene expression and proinflammatory cytokine profile relative to insemination in dairy cows. Biol Rhythm Res. 2019;50(3):335-45. http://dx.doi.org/10.1080/09291016.2018.1440777.

Shirasuna K, Matsumoto H, Kobayashi E, Nitta A, Haneda S, Matsui M, Kawashima C, Kida K, Shimizu T, Miyamoto A. Upregulation of interferon-stimulated genes and Interleukin-10 in peripheral blood immune cells during early pregnancy in dairy cows. J Reprod Dev. 2012;58(1):84-90. http://dx.doi.org/10.1262/jrd.11-094K. PMid:22052007.

Shirasuna K, Matsumoto H, Matsuyama S, Kimura K, Bollwein H, Miyamoto A. Possible role of interferon tau on the bovine corpus luteum and neutrophils during the early pregnancy. Reproduction. 2015;150(3):217-25. http://dx.doi.org/10.1530/REP-15-0085. PMid:26078085.

Shooner C, Caron PL, Fréchette-Frigon G, Leblanc V, Déry MC, Asselin E. TGF-beta expression during rat pregnancy and activity on decidual cell survival. Reprod Biol Endocrinol. 2005;3(1):20. http://dx.doi.org/10.1186/1477-7827-3-20. PMid:15927076.

Short R. Implantation and the maternal recognition of pregnancy. In: Wolstenholme G, O’Connor M, editors. Foetal autonomy. Londres: Churchill; 1969. p. 2-26. http://dx.doi.org/10.1002/9780470719688.ch2.

Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8(19):4083-99. http://dx.doi.org/10.1002/pmic.200800109. PMid:18780348.

Skjerven O. Endometrial biopsy studies in reproductively normal cattle; clinical, histochemical and histological observations during the estrous cycle. Acta Endocrinol Suppl (Copenh). 1956;22(Suppl 26):1-101. PMid:13354232.

Skopets B, Li J, Thatcher WW, Roberts RM, Hansen PJ. Inhibition of lymphocyte proliferation by bovine trophoblast protein-1 (type I trophoblast interferon) and bovine interferon-alpha I1. Vet Immunol Immunopathol. 1992;34(1-2):81-96. http://dx.doi.org/10.1016/0165-2427(92)90153-H. PMid:1441230.

Spencer TE, Bazer FW. Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology. 1996;137(3):1144-7. http://dx.doi.org/10.1210/endo.137.3.8603586. PMid:8603586.

Spencer TE, Burghardt RC, Johnson GA, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Anim Reprod Sci. 2004;82–83:537-50. http://dx.doi.org/10.1016/j.anireprosci.2004.04.014. PMid:15271478.

Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Fetal-maternal interactions during the establishment of pregnancy in ruminants. Soc Reprod Fertil Suppl. 2007;64(1):379-96. http://dx.doi.org/10.5661/RDR-VI-379. PMid:17491160.

Sponchiado M, Gomes NS, Fontes PK, Martins T, Del Collado M, Pastore ADA, Pugliesi G, Nogueira MFG, Binelli M. Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. PLoS One. 2017;12(4):e0175954. http://dx.doi.org/10.1371/journal.pone.0175954. PMid:28423001.

Sponchiado M, Gonella-Diaza AM, Rocha CC, Turco EGL, Pugliesi G, Leroy JLMR, Binelli M. The pre-hatching bovine embryo transforms the uterine luminal metabolite composition in vivo. Sci Rep. 2019;9(1):8354. http://dx.doi.org/10.1038/s41598-019-44590-9. PMid:31175317.

Ssemaganda A, Kindinger L, Bergin P, Nielsen L, Mpendo J, Ssetaala A, Kiwanuka N, Munder M, Teoh TG, Kropf P, Müller I. Characterization of neutrophil subsets in healthy human pregnancies. PLoS One. 2014;9(2):e85696. http://dx.doi.org/10.1371/journal.pone.0085696. PMid:24551035.

Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89(2):205-12. http://dx.doi.org/10.1016/j.biochi.2006.10.014. PMid:17157973.

Subramaniam PS, Khan SA, Pontzer CH, Johnson HM. Differential recognition of the type I interferon receptor by interferons τ and α is responsible for their disparate cytotoxicities. Proc Natl Acad Sci USA. 1995;92(26):12270-4. http://dx.doi.org/10.1073/pnas.92.26.12270. PMid:8618883.

Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011;187(7):3671-82. http://dx.doi.org/10.4049/jimmunol.1100130. PMid:21890660.

Takei H, Araki A, Watanabe H, Ichinose A, Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229-40. http://dx.doi.org/10.1002/jlb.59.2.229. PMid:8603995.

Talukder AK, Yousef MS, Rashid MB, Awai K, Acosta TJ, Shimizu T, Okuda K, Shimada M, Imakawa K, Miyamoto A. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J Reprod Dev. 2017;63(4):425-34. http://dx.doi.org/10.1262/jrd.2017-056. PMid:28603222.

Talukder AK, Rashid MB, Yousef MS, Kusama K, Shimizu T, Shimada M, Suarez SS, Imakawa K, Miyamoto A. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci Rep. 2018;8(1):7850. http://dx.doi.org/10.1038/s41598-018-26224-8. PMid:29777205.

Talukder AK, Rashid MB, Takedomi T, Moriyasu S, Imakawa K, Miyamoto A. Day-7 embryos generate an anti-inflammatory immune response in peripheral blood immune cells in superovulated cows. Am J Reprod Immunol. 2019;81(2):e13069. http://dx.doi.org/10.1111/aji.13069. PMid:30376193.

Tanaka T, Hu-Li J, Seder RA, Fazekas de St Groth B, Paul WE. Interleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagement. Proc Natl Acad Sci USA. 1993;90(13):5914-8. http://dx.doi.org/10.1073/pnas.90.13.5914. PMid:8100998.

Tecchio C, Cassatella MA. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem Immunol Allergy. 2014;99:123-37. http://dx.doi.org/10.1159/000353358. PMid:24217606.

Thatcher WW, Bazer FW, Sharp DC, Roberts RM. Interrelationships between uterus and conceptus to maintain corpus luteum function in early pregnancy: sheep, cattle, pigs and horses. J Anim Sci. 1986;62(Suppl 2):25-46. http://dx.doi.org/10.1093/ansci/62.2.25. PMid:3533874.

Thaxton JE, Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am J Reprod Immunol. 2010;63(6):482-91. http://dx.doi.org/10.1111/j.1600-0897.2010.00810.x. PMid:20163400.

Toji N, Shigeno S, Kizaki K, Koshi K, Matsuda H, Hashiyada Y, Imai K, Takahashi T, Ishiguro-Oonuma T, Hashizume K. Evaluation of interferon-stimulated genes in peripheral blood granulocytes as sensitive responders to bovine early conceptus signals. Vet J. 2017;229:37-44. http://dx.doi.org/10.1016/j.tvjl.2017.10.007. PMid:29183572.

Tuo W, Bazer FW, Davis WC, Zhu D, Brown WC. Differential effects of type I IFNs on the growth of WC1-CD8+ γδ T cells and WC1+ CDS- γδ T cells in vitro. J Immunol. 1999;162(1):245-53. PMid:9886392.

Tuo W, Ott TL, Bazer FW. Natural killer cell activity of lymphocytes exposed to ovine, type I, trophoblast interferon. Am J Reprod Immunol. 1993;29(1):26-34. http://dx.doi.org/10.1111/j.1600-0897.1993.tb00833.x. PMid:8503992.

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. http://dx.doi.org/10.1038/ncb1596. PMid:17486113.

Vallet JL, Bazer FW, Fliss MFV, Thatcher WW. Effect of ovine conceptus secretory proteins and purified ovine trophoblast protein-1 on interoestrous interval and plasma concentrations of prostaglandins F-2α and E and of 13,14-dihydro-15-keto prostaglandin F-2α in cyclic ewes. J Reprod Fertil. 1988;84(2):493-504. http://dx.doi.org/10.1530/jrf.0.0840493. PMid:3199368.

Waight JD, Hu Q, Miller A, Liu S, Abrams SI. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One. 2011;6(11):e27690. http://dx.doi.org/10.1371/journal.pone.0027690. PMid:22110722.

Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics. 2010;11(1):474. http://dx.doi.org/10.1186/1471-2164-11-474. PMid:20707927.

Wang XL, Wang K, Han GC, Zeng SM. A potential autocrine role for interferon Tau in ovine trophectoderm. Reprod Domest Anim. 2013;48(5):819-25. http://dx.doi.org/10.1111/rda.12169. PMid:23551360.

Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353-6. http://dx.doi.org/10.1016/0167-5699(93)90235-D. PMid:8363725.

Whittemore LA, Maniatis T. Postinduction turnoff of beta-interferon gene expression. Mol Cell Biol. 1990;10(4):1329-37. http://dx.doi.org/10.1128/mcb.10.4.1329. PMid:2157136.

Wiebold JL. Embryonic mortality and the uterine environment in first-service lactating dairy cows. J Reprod Fertil. 1988;84(2):393-9. http://dx.doi.org/10.1530/jrf.0.0840393. PMid:3199356.

Wilczyński JR. Th1/Th2 cytokines balance - Yin and yang of reproductive immunology. Eur J Obstet Gynecol Reprod Biol. 2005;122(2):136-43. http://dx.doi.org/10.1016/j.ejogrb.2005.03.008. PMid:15893871.

Wu C-FF, Andzinski L, Kasnitz N, Kroger A, Klawonn F, Lienenklaus S, Weiss S, Jablonska J. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung. Int J Cancer. 2015;137(4):837-47. http://dx.doi.org/10.1002/ijc.29444. PMid:25604426.

Yang L, Bai J, Zhao Z, Li N, Wang Y, Zhang L. Differential expression of T helper cytokines in the liver during early pregnancy in sheep. Anim Reprod. 2019;16(2):332-9. http://dx.doi.org/10.21451/1984-3143-AR2018-0141. PMid:33224295.

Yoshino H, Toji N, Sasaki K, Koshi K, Yamagishi N, Takahashi T, Ishiguro-Oonuma T, Matsuda H, Yamanouchi T, Hashiyada Y, Imai K, Izaike Y, Kizaki K, Hashizume K. A predictive threshold value for the diagnosis of early pregnancy in cows using interferon-stimulated genes in granulocytes. Theriogenology. 2018;107:188-93. http://dx.doi.org/10.1016/j.theriogenology.2017.11.014. PMid:29172175.

Zhang L, Zhao Z, Wang Y, Li N, Cao N, Yang L. Changes in expression of interferon-stimulated genes and ubiquitin activating enzyme E1-like in ovine thymus during early pregnancy. Anim Reprod. 2020;17(2):e20190134. http://dx.doi.org/10.1590/1984-3143-ar2019-0134. PMid:32714456.
 


Submitted date:
06/08/2021

Accepted date:
09/24/2021

6176f23ea95395725767d9a3 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections