Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2021-0087
Animal Reproduction (AR)
ORIGINAL ARTICLE

Expression of the NSE,SP,NFH and DβH in normal and cryptorchid testes of Bactrian camel

Ligang Yuan; Hua Wang; Hongzao Yang; Shaoyu Chen; Dapeng Yang; Yong Zhang

Downloads: 2
Views: 88

Abstract

Neuroendocrine substances play essential roles in regulating the normal physiological functions of testicles. The purpose of this study is to explore the localization and effects of four neuroendocrine markers (NSE, SP, NFH and DβH) in normal and cryptorchid testes of Bactrian camels using western blotting, transmission electron microscopy, immunohistochemistry, and immunofluorescence methods. The results showed that cryptorchidism caused a reduction in layers of spermatogenic epithelium and decreased glycogen positivity in the basement membrane. The ultrastructure revealed that macrophages were always found around the Leydig cells, crowded with swelling mitochondria in cryptorchidism. Expression of NSE in the Leydig cells of cryptorchidism was significantly weakened compared to that in the normal group(p<0.01). We found that SP was always distributed along the nerve fibers in normal testes and was expressed in the Leydig cells of cryptorchidism. However, expression of NFH in the cryptorchidic tissue was strongly positive in the spermatogenic epithelium, with limited expression in Leydig cells and no expression in peritubular myoid cells. Therefore, the expression of DβH in the Sertoli cells was comparatively strong in both the normal and cryptorchidism groups. NFH and DβH expression was significantly increased in the cryptorchidism group compared with the normal group (p<0.01). These findings indicated that the underdeveloped seminiferous epithelium and pathological changes in cryptorchid tissue in Bactrian camels were potentially related to a disorder in glycoprotein metabolism. Our results suggest that NSE and SP could help judge the pathological changes of cryptorchidism. The present study provides the first evidence at the protein level for the existence of NFH and DβH in Sertoli and Leydig cells in Bactrian camel cryptorchidism and provides a more in-depth understanding of neuroendocrine regulation is crucial for animal cryptorchidism.

Keywords

Bactrian camel, cryptorchidism, neuroendocrine markers, immunohistochemistry

References

Abd-Elmaksoud A, Sayed-Ahmed A, Kassab M, Aly K. Histochemical mapping of glycoconjugates in the testis of the one humped camel (Camelus dromedarius) during rutting and non-rutting seasons. Acta Histochem. 2008;110(2):124-33. http://dx.doi.org/10.1016/j.acthis.2007.10.004. PMid:18068218.

Ali A, Derar R, Al-Sobayil F, Mehana S, Al-Hawas A. AImpotentia generandi in male dromedary camels: clinical findings, semen characteristics, and testicular histopathology. Theriogenology. 2014;82(6):890-6. http://dx.doi.org/10.1016/j.theriogenology.2014.07.001. PMid:25107628.

Amadio S, Montilli C, Picconi B, Calabresi P, Volonté C. Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: an immunohistological study. Purinergic Signal. 2007;3(4):389-98. http://dx.doi.org/10.1007/s11302-007-9069-8. PMid:18404452.

Angelova P, Davidoff M, Baleva K, Staykova M. Substance P-and neuron-specific enolase-like immunoreactivity of rodent Leydig cells in tissue section and cell culture. Acta Histochem. 1991;91(2):131-9. http://dx.doi.org/10.1016/S0065-1281(11)80266-7. PMid:1725082.

Barrionuevo F, Burgos M, Jiménez R. Origin and function of embryonic Sertoli cells. Biomol Concepts. 2011;2(6):537-47. http://dx.doi.org/10.1515/BMC.2011.044. PMid:25962053.

Blasco V, Pinto FM, González-Ravina C, Santamaría-López E, Candenas L, Fernández-Sánchez M. Tachykinins and kisspeptins in the regulation of human male fertility. J Clin Med. 2019;9(1):113. http://dx.doi.org/10.3390/jcm9010113. PMid:31906206.

Buckley K, Kelly RB. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol. 1985;100(4):1284-94. http://dx.doi.org/10.1083/jcb.100.4.1284. PMid:2579958.

Butler CM, Shaw G, Clark J, Renfree MB. The functional development of leydig cells in a marsupial. J Anat. 2008;212(1):55-66. http://dx.doi.org/10.1111/j.1469-7580.2007.00837.x. PMid:18069991.

Chen G, Yuan L, Li C, Yan Z. The histologic characteristics of yak cryptorchidism. Acta Vet Zootech Sin. 2015;46(12):2282-90.

Chiwakata C, Brackmann B, Hunt N, Davidoff M, Schulze W, Ivell R. Tachykinin (Substance-P) gene expression in Leydig cells of the human and mouse testis. Endocrinology. 1991;128(5):2441-2448. http://dx.doi.org/10.1210/endo-128-5-2441. PMid:1708336.

Culling CFA. Handbook of histopathological and histochemical techniques. Butterworth: Elsevier; 1974. p. 416–25.

Curley M, Milne L, Smith S, Jørgensen A, Frederiksen H, Hadoke P, Potter P, Smith LB. A young testicular microenvironment protects leydig cells against age-related dysfunction in a mouse model of premature aging. FASEB J. 2019;33(1):978-95. http://dx.doi.org/10.1096/fj.201800612R. PMid:30080443.

Davidoff MS, Middendorff R, Köfüncü E, Müller D, Ježek D, Holstein AF. Leydig cells of the human testis possess astrocyte and oligodendrocyte marker molecules. Acta Histochem. 2002;104(1):39-49. http://dx.doi.org/10.1078/0065-1281-00630. PMid:11993850.

Davidoff MS, Middendorff R, Müller D, Holstein AF. The neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. Adv Anat Embryol Cell Biol. 2009;205:1-107. http://dx.doi.org/10.1007/978-3-642-00513-8_1. PMid:19711572.

Davidoff MS, Middendorff R, Pusch W, Müller D, Wichers S, Holstein AF. Sertoli and Leydig cells of the human testis express neurofilament triplet proteins. Histochem Cell Biol. 1999;111(3):173-87. http://dx.doi.org/10.1007/s004180050347. PMid:10094414.

Davidoff MS, Ungefroren H, Middendorff R, Koeva Y, Bakalska M, Atanassova N, Holstein AF, Jezek D, Pusch W, Müller D. Catecholamine-synthesizing enzymes in the adult and prenatal human testis. Histochem Cell Biol. 2005;124(3-4):313-23. http://dx.doi.org/10.1007/s00418-005-0024-x. PMid:16052322.

El-Harairy MA, Attia KA. Effect of age, pubertal stage and season on testosterone concentration in male dromedary camel. Saudi J Biol Sci. 2010;17(3):227-30. http://dx.doi.org/10.1016/j.sjbs.2010.04.006. PMid:23961082.

Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol. 1931;72(1):74-87. http://dx.doi.org/10.1113/jphysiol.1931.sp002763. PMid:16994201.

Euler US. An adrenaline-like action in extracts from the prostatic and related glands. J Physiol. 1934;81(1):102-12. http://dx.doi.org/10.1113/jphysiol.1934.sp003119. PMid:16994522.

Ezeasor DN. Light and electron microscopical observations on the Leydig cells of the scrotal and abdominaltestes of naturally unilateral cryptorchid west african dwarf goats. J Anat. 1985;141:27-40. PMid:2867081.

Frungieri MB, Urbanski HF, Höhne-Zell B, Mayerhofer A. Neuronal elements in the testis of the rhesus monkey: ontogeny, characterization and relationship to testicular cells. Neuroendocrinology. 2000;71(1):43-50. http://dx.doi.org/10.1159/000054519. PMid:10644898.

Gong YG, Feng MM, Hu XN, Wang YQ, Gu M, Zhang W, Ge RS. Peptidergic not monoaminergic fibers profusely innervate the young adult human testis. J Anat. 2009;214(3):330-8. http://dx.doi.org/10.1111/j.1469-7580.2008.01038.x. PMid:19245500.

Hamdi SM, Almont T, Galinier P, Mieusset R, Thonneau P. Altered secretion of sertoli cells hormones in 2-year-old prepubertal cryptorchid boys:a cross-sectional study. Andrology. 2017;5(4):783-9. http://dx.doi.org/10.1111/andr.12373. PMid:28544660.

Huo S, Xu Z, Zhang X, Zhang J, Cui S. Testicular denervation in prepuberty rat inhibits seminiferous tubule development and spermatogenesis. J Reprod Dev. 2010;56(4):370-8. http://dx.doi.org/10.1262/jrd.10-009N. PMid:20424380.

Kaleczyc J, Kasica-Jarosz N, Pidsudko Z, Przyborowska A, Sienkiewicz W. The expression of androgen receptor in neurons of the anterior pelvic ganglion and celiac-superior mesenteric ganglion in the male pig. Pol J Vet Sci. 2019;22(1):151-5. PMid:30997776.

Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol. 2021;19(1):4. http://dx.doi.org/10.1186/s12958-020-00686-w. PMid:33407539.

Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO. The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(6):620-32. http://dx.doi.org/10.1007/s002100000369. PMid:11414657.

Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7(29):44879-905. http://dx.doi.org/10.18632/oncotarget.9821. PMid:27270647.

Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R. Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol. 2015;32:92-101. http://dx.doi.org/10.1016/j.ceb.2015.01.003. PMid:25635910.

Liu M. Capacitation-associated glycocomponents of mammalian. Sperm Reprod Sci. 2016;23(5):572-94. http://dx.doi.org/10.1177/1933719115602760. PMid:26363036.

Lu C, Zhang Z, Jiang Y, Yang Z, Yang Q, Liao D, Bu H. Primary pure carcinoid tumors of the testis: clinicopathological and immunophenotypical characteristics of 11 cases. Oncol Lett. 2015;9(5):2017-22. http://dx.doi.org/10.3892/ol.2015.3046. PMid:26137005.

Maddocks S, Kern S, Setchell B. Investigating local regulation of the testes of ruminants. J Reprod Fertil Suppl. 1995;49(2):309-19. PMid:7623324.

Mäkelä J, Koskenniemi JJ, Virtanen HE, Toppari J. Testis development. Endocr Rev. 2019;40(4):857-905. http://dx.doi.org/10.1210/er.2018-00140. PMid:30590466.

Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol. 2018;48(5):37-49. http://dx.doi.org/10.1016/j.yfrne.2017.07.008. PMid:28754629.

Martin LJ. Cell interactions and genetic regulation that contribute to testicular leydig cell development and differentiation. Mol Reprod Dev. 2016;83(6):470-87. http://dx.doi.org/10.1002/mrd.22648. PMid:27079813.

Mayerhofer A, Frungieri M, Fritz S, Bulling A, Jessberger B, Vogt H. Evidence for catecholaminergic, neuronlike cells in the adult human testis: changes associated with testicular pathologies. J Androl. 1999;20(3):341-7. PMid:10386813.

Middendorff R, Davidoff M, Holstein AF. Neuroendocrine marker substances in human leydig cells-changes by disturbances of testicular function. Andrologia. 1993;25(5):257-62. http://dx.doi.org/10.1111/j.1439-0272.1993.tb02722.x. PMid:7902679.

Moore BC, Hamlin HJ, Botteri NL, Lawler AN, Mathavan KK, Guillette LJ Jr. Posthatching development of alligator mississippiensis ovary and testis. J Morphol. 2010;271(5):580-95. http://dx.doi.org/10.1002/jmor.10818. PMid:20013789.

Moore BW, Mcgregor D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J Biol Chem. 1965;240(4):1647-53. http://dx.doi.org/10.1016/S0021-9258(18)97483-1. PMid:14285503.

Mularoni V, Esposito V, Di Persio S, Vicini E, Spadetta G, Berloco P, Fanelli F, Mezzullo M, Pagotto U, Pelusi C, Nielsen JE, Meyts ER, Jorgensen N, Jorgensen A, Boitani C. Age-related changes in human leydig cell status. Hum Reprod. 2020;35(12):2663-76. http://dx.doi.org/10.1093/humrep/deaa271. PMid:33094328.

Müller D, Davidoff MS, Bargheer O, Paust HJ, Pusch W, Koeva Y, Jezek D, Holstein AF, Middendorff R. The expression of neurotrophins and their receptors in the prenatal and adult human testis: evidence for functions in leydig cells. Histochem Cell Biol. 2006;126(2):199-211. http://dx.doi.org/10.1007/s00418-006-0155-8. PMid:16463180.

Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life. 2021;73(3):568-81. http://dx.doi.org/10.1002/iub.2390. PMid:33035389.

O’Shaughnessy PJ, Morris ID, Baker PJ. Leydig cell re-generation and expression of cell signaling molecules in the germ cell-free testis. Reproduction. 2008;135(6):851-8. http://dx.doi.org/10.1530/REP-07-0529. PMid:18502897.

Ortega HH, Lorente JA, Salvetti NR. Immunohistochemical study of intermediate filaments and neuroendocrine marker expression in leydig cells of laboratory rodents. Anat Histol Embryol. 2004;33(5):309-15. http://dx.doi.org/10.1111/j.1439-0264.2004.00559.x. PMid:15352886.

Osman DI, Moniem KA, Tingari MD. Studies on the testis of the camel (Camelus dromedarius). III. Histochemical observations. Histochem J. 1976;8(6):579-90. http://dx.doi.org/10.1007/BF01003959. PMid:993050.

Owston MA, Ramos-vara JA. Histologic and immunohistochemical characterization of a testicular mixed germ cell sex cord-stromal tumor and a leydig cell tumor in a dog. Vet Pathol. 2007;44(6):936-43. http://dx.doi.org/10.1354/vp.44-6-936. PMid:18039910.

Pasha R, Qureshi AS, Lodhi L, Jamil H, Masood A, Hamid S, Iqbal J, Kamran Z, Khamas W. Seasonal changes in the anatomy of testis of one-humped camel (Camelus Dromedarius). J Camel Pract Res. 2011;18(1):145-53.

Pinart E, Sancho S, Briz MD, Bonet S, Garcia N, Badia E. Ultrastructural study of the boar seminiferous Epithelium: changes in cryptorchidism. J Morphol. 2000;244(3):190-202. http://dx.doi.org/10.1002/(SICI)1097-4687(200006)244:3<190::AID-JMOR4>3.0.CO;2-B. PMid:10815002.

Plant TM. 60 years of neuroendocrinology: the hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015;226(2):T41-54. http://dx.doi.org/10.1530/JOE-15-0113. PMid:25901041.

Procópio MS, Avelar GF, Costa GMJ, Lacerda SMSN, Resende RR, França LR. MicroRNAs in sertoli cells: implications for spermatogenesis and fertility. Cell Tissue Res. 2017;370(3):335-46. http://dx.doi.org/10.1007/s00441-017-2667-z. PMid:28779347.

Romeo R, Pellitteri R, Russo A, Marcello MF. Catecholaminergic phenotype of human Leydig cells. Ital J Anat Embryol. 2004;109(1):45-54. PMid:15141475.

Saleh AMM, Alameldin MA, Abdelmoniem ME, Hassouna EM, Wrobel KH. Immunohistochemical investigations of the autonomous nerve distribution in the testis of the camel (Camelus Dromedarius). Ann Anat. 2002;184(3):209-20. http://dx.doi.org/10.1016/S0940-9602(02)80106-6. PMid:12056750.

Schmechel D, Marangos PJ, Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978;276(5690):834-6. http://dx.doi.org/10.1038/276834a0. PMid:31568.

Schulze W, Davidoff MS, Ivell R, Holstein AF. Neuron-specific enolase-like immunoreactivity in human leydig cells. Andrologia. 1991;23(4):279-83. http://dx.doi.org/10.1111/j.1439-0272.1991.tb02560.x. PMid:1772141.

Suburo AM, Chiocchio SR, Soler MVCC, Nieponice A, Tramezzani JH. Peptidergic innervation of blood vessels and interstitial cells in the testis of the cat. J Androl. 2002;23(1):121-34. http://dx.doi.org/10.1002/j.1939-4640.2002.tb02605.x. PMid:11783440.

Tanyel FC, Ertunç M, Büyükpamukçu N, Onur R. Mechanisms involved in contractile differences among cremaster muscles according to localization of testis. J Pediatr Surg. 2001;36(10):1551-60. http://dx.doi.org/10.1053/jpsu.2001.27042. PMid:11584407.

Terzano GM, Barilen VL, Borghese A. Overview on reproductive endocrine aspects in buffalo. J Buffalo Science. 2012;1(2):126-38. http://dx.doi.org/10.6000/1927-520X.2012.01.02.01.

Walsh MD, Jass JR. Histologically based methods for detection of mucin methods protoc. Totowa: Humana Press; 2000. p. 29–44.

Wrobel KH, Moustafa MNK. On the innervation of the donkey testis. Ann Anat. 2000;182(1):13-22. http://dx.doi.org/10.1016/S0940-9602(00)80116-8. PMid:10668554.

Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol. 2017a;9(4):a018309. http://dx.doi.org/10.1101/cshperspect.a018309. PMid:28373358.

Yuan L, Lu Y, Tao J, Zhang Y. Comparison of histochemical and ultrastructural characteristics of extracellular matrix components in the scrotal and cryptorchid testes of the Bactrian camel. Shou Lei Xue Bao. 2017b;37(2):189-99.

Yuan L, Qu Y, Li C, Lu Y, Yan Z. The histologic and ultrastructural characteristics of the Bactrian camel testis in cryptorchidism. Acta Vet Zootech Sin. 2016;47(5):993-1000.

Yuan L, Wang H, Wang Q, Li C, Yang D. INSL-3 protein expression in normal and cryptorchid testes of ziwuling black goats. Reprod Domest Anim. 2021;56(5):725-35. http://dx.doi.org/10.1111/rda.13911. PMid:33544931.

Yuan L, Yan Z, Tao J, Liu Y, Chen G. The distribution of PGP9.5 and NPY in the normal testis and cryptorchidism of Bactrian camel. Acta Vet Zootech Sin. 2015;46(2):303-8.

Yue F, Cui L, Johkura K, Ogiwara N, Sasaki K. Induction of midbrain dopaminergic neurons from primate embryonic stem cells by coculture with sertoli cells. Stem Cells. 2006;24(7):1695-706. http://dx.doi.org/10.1634/stemcells.2005-0409. PMid:16822882.

Zhuang S, Dang Y, Schnellmann RG. Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration. Am J Physiol Renal Physiol. 2004;287(3):F365-72. http://dx.doi.org/10.1152/ajprenal.00035.2004. PMid:15213065.

Zivkovic D, Hadziselimovic F. Development of sertoli cells during mini-puberty in normal and cryptorchid testes. Urol Int. 2009;82(1):89-91. http://dx.doi.org/10.1159/000176032. PMid:19172104.
 


Submitted date:
08/28/2021

Accepted date:
12/17/2021

61fc22f9a9539543202f60d3 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections