Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2021-0088
Animal Reproduction (AR)
ORIGINAL ARTICLE

Diet crude protein reduction on follicular fluid and cumulus-oocyte complexes of mid-lactating Girolando cows

Luciano de Rezende Carvalheira; Gustavo Bervian dos Santos; Jasmim; Clóvis Ribeiro Guimarães; Mariana Magalhães Campos; Fernanda Samarini Machado; Alexandre Mendonça Pedroso; Tadeu Eder da Silva; Luiz Altamiro Garcia Nogueira; André Luís Rios Rodrigues; Bruno Campos de Carvalho

Downloads: 0
Views: 578

Abstract

This study evaluated the effect of crude protein (CP) reduction in four diets (156, 139, 132, and 127 g Kg-1 DM) maintaining constant metabolizable protein (188 g/day) on the follicular fluid and cumulus-oocyte complexes of mid-lactating Girolando cows. Twenty-two Girolando cows with average of 21.55 ±3.19 L daily milk yield, 105.30 ±22.62 days in lactation and 3.22 ±0.03 body condition score were selected. To reduce CP in diets and maintain constant metabolizable protein, urea and soybean meal were gradually replaced by lignosulfonate-treated soybean meal (SoyPass®, Cargill), resulting in an increase in rumen-undegradable protein and a reduction in rumen degradable protein. A linear and quadratic reduction was observed in the plasma and follicular fluid urea nitrogen concentration following CP reduction, with the most intense reduction occurring in the 127 g Kg-1 DM group (p<0.001). As CP reduced, there was a tendency for a linear increase in the follicular growth rate (P=0.0696), on the number and proportion of viable oocytes (P<0.09), and also a linear increase for the number (P=0.0397) and proportion (P<0.09) of grade I viable oocytes. Plus, there was a linear effect for the number of cumulus oophorus cells. Cows fed with the lowest amount of CP had cumulus-oocyte complexes with higher numbers of cumulus oophorus cells (P=0.0238). Also, the reduction of diet crude protein was followed by a decrease in the probability of oocytes’ DNA degradation. In conclusion, the reduction of CP in the diet of mid-lactating Girolando cows, reduces urea nitrogen concentration in both blood plasma and follicular fluid, and, as a consequence, increases the viability of oocytes and the number of cumulus oophorus cells while reducing oocytes’ DNA degradation of follicular included cumulus-oocyte complex. The reduction on dietary CP may improve in vivo oocytes’ embryo development impacting fertility of lactating dairy cows.

Keywords

apoptosis, nutrition, reproduction, urea

References

Aboozar M, Amanlou H, Aghazadeh AM, Adl KN, Moeini M, Tanha T. Impacts of different levels of RUP on performance and reproduction of Holstein fresh cows. J Anim Vet Adv. 2012;11(9):1338-45. http://dx.doi.org/10.3923/javaa.2012.1338.1345.

Apelo SIA, Bell AL, Estes K, Ropelewski J, Veth MJ, Hanigan MD. Effects of reduced dietary protein and supplemental rumen-protected essential amino acids on the nitrogen efficiency of dairy cows. J Dairy Sci. 2014;97(9):5688-99. http://dx.doi.org/10.3168/jds.2013-7833. PMid:25022689.

Ascari IJ, Alves NG, Jasmin J, Lima RR, Quintão CCR, Oberlender G, Moraes EA, Camargo LSA. Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock: effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence. Domest Anim Endocrinol. 2017;60:50-60. http://dx.doi.org/10.1016/j.domaniend.2017.03.003. PMid:28445838.

Bach A, Calsamiglia S, Stern MD. Nitrogen metabolism in the rumen. J Dairy Sci. 2005;88(Suppl 1):E9-21. http://dx.doi.org/10.3168/jds.S0022-0302(05)73133-7. PMid:15876575.

Bahrami-Yekdangi H, Khorvash M, Ghorbani GR, Alikhani M, Jahanian R, Kamalian E. Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation. J Dairy Sci. 2014;97(6):3707-14. http://dx.doi.org/10.3168/jds.2013-6725. PMid:24679928.

Butler WR. Review: effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J Dairy Sci. 1998;81(9):2533-9. http://dx.doi.org/10.3168/jds.S0022-0302(98)70146-8. PMid:9785246.

Dijkstra J, Oenema O, Bannink A. Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Curr Opin Environ Sustain. 2011;3(5):414-22. http://dx.doi.org/10.1016/j.cosust.2011.07.008.

Franzoni APS, Glória JR, Costa ALBSA, Martins RA, Amaral TF, Azevedo RA, Campos EF, Coelho SG. Metabolic and hormone profiles of Holstein x Gyr cows during pre- and postpartum. Pesqui Agropecu Bras. 2018;53(3):371-7. http://dx.doi.org/10.1590/s0100-204x2018000300012.

Gath VP, Crowe MA, O’Callaghan D, Boland MP, Duffy P, Lonergan P, Mulligan FJ. Effects of diet type on establishment of pregnancy and embryo development in beef heifers. Anim Reprod Sci. 2012;133(3-4):139-45. http://dx.doi.org/10.1016/j.anireprosci.2012.06.019. PMid:22818782.

Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, West M, Kramer M. Analysis of generalized linear mixed models in the agricultural and natural resources sciences. Madison: American Society of Agronomy/Soil Science Society of America/Crop Science Society of America; 2012. http://dx.doi.org/10.2134/2012.generalized-linear-mixed-models.

Guimarães CR, Azevedo RA, Campos MM, Machado FS, Pedroso AM, Carvalheira LR, Tomich TR, Pereira LGR, Coelho SG. Reduction of crude protein in diets fed to lactating Holstein-Gyr cows. Pesqui Agropecu Bras. 2018;53(7):858-65. http://dx.doi.org/10.1590/s0100-204x2018000700010.

Hristov AN, Etter RP, Ropp JK, Grandeen KL. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows. J Anim Sci. 2004;82(11):3219-29. http://dx.doi.org/10.2527/2004.82113219x. PMid:15542468.

Kaps M, Lamberson WR. Biostatistics for animal science. Cambridge: CABI Publishing; 2004. http://dx.doi.org/10.1079/9780851998206.0000.

Lean IJ, Celi P, Raadsma H, McNamara J, Rabiee AR. Effects of dietary crude protein on fertility: meta-analysis and meta-regression. Anim Feed Sci Technol. 2012;171(1):31-42. http://dx.doi.org/10.1016/j.anifeedsci.2011.09.017.

Leroy JLMR, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PEJ, Kruif A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 2004;80(3-4):201-11. http://dx.doi.org/10.1016/S0378-4320(03)00173-8. PMid:15036497.

Li HJ, Liu DJ, Cang M, Wang LM, Jin MZ, Ma YZ, Shorgan B. Early apoptosis is associated with improved developmental potential in bovine oocytes. Anim Reprod Sci. 2009;114(1-3):89-98. http://dx.doi.org/10.1016/j.anireprosci.2008.09.018. PMid:19008057.

Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O. SAS® for mixed models. 2nd ed. Cary: SAS Institute Inc.; 2006.

McCormick ME, French DD, Brown TF, Cuomo GJ, Chapa AM, Fernandez JM, Beatty JF, Blouin DC. Crude protein and rumen undegradable protein effects on reproduction and lactation performance of Holstein cows. J Dairy Sci. 1999;82(12):2697-708. http://dx.doi.org/10.3168/jds.S0022-0302(99)75526-8. PMid:10629817.

Moallem U, Blanck R, Lehrer H, Livshitz L, Zachut M, Arieli A. Effects of high dietary crude protein on the characteristics of preovulatory follicles in dairy heifers. J Dairy Sci. 2011;94(2):785-92. http://dx.doi.org/10.3168/jds.2010-3565. PMid:21257046.

NRC. Nutrient requirements of dairy cattle. 7th ed. Washington: National Academy Press; 2001.

Porto-Neto LR, Reverter A, Prayaga KC, Chan EKF, Johnston DJ, Hawken RJ, Fordyce G, Garcia JF, Sonstegard TS, Bolormaa S, Goddard ME, Burrow HM, Henshall JM, Lehnert SA, Barendse W. The genetic architecture of climatic adaptation of tropical cattle. PLoS One. 2014;9(11):e113284. http://dx.doi.org/10.1371/journal.pone.0113284. PMid:25419663.

Reed KF, Bonfá HC, Dijkstra J, Casper DP, Kebreab E. Estimating the energetic cost of feeding excess dietary nitrogen to dairy cows. J Dairy Sci. 2017;100(9):7116-26. http://dx.doi.org/10.3168/jds.2017-12584. PMid:28711249.

Ribeiro LS, Brandão FZ, Carvalheira LR, Goes TJF, Torres RA Fo, Quintão CCR, Pires MFÁ, Camargo LSA, Carvalho BC. Chromium supplementation improves glucose metabolism and vaginal temperature regulation in Girolando cows under heat stress conditions in a climatic chamber. Trop Anim Health Prod. 2020;52(4):1661-8. http://dx.doi.org/10.1007/s11250-019-02173-w. PMid:31853788.

Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021-9. http://dx.doi.org/10.1095/biolreprod.109.082941. PMid:20164441.

Sales JNS, Iguma LT, Batista RITP, Quintão CCR, Gama MAS, Freitas C, Pereira MM, Camargo LSA, Viana JHM, Souza JC, Baruselli PS. Effects of a high-energy diet on oocyte quality and “in vitro” embryo production in Bos indicus and Bos taurus cows. J Dairy Sci. 2015;98(5):3086-99. http://dx.doi.org/10.3168/jds.2014-8858. PMid:25726114.

Santos GB, Brandão FZ, Ribeiro LS, Arashiro EKN, Grazia JGV, Camargo LSA, Machado FS, Varago FC, Otto PI, Carvalho BC. Metabolic, follicular and embryo production responses of postpartum crossbred Holstein × Gir dairy cows fed diets with different energy levels. Anim Prod Sci. 2019;59(8):1446-53. http://dx.doi.org/10.1071/AN18090.

Santos P, Marques A, Antunes G, Chaveiro A, Andrade M, Borba A, Silva MF. Effects of plasma urea nitrogen levels on the bovine oocyte ability to develop after “in vitro” fertilization. Reprod Domest Anim. 2009;44(5):783-7. http://dx.doi.org/10.1111/j.1439-0531.2008.01075.x. PMid:18992098.

Sawa A, Bogucki M, Krężel-Czopek S. Effect of some factors on relationships between milk urea levels and cow fertility. Arch Tierzucht. 2011;54(5):468-76. http://dx.doi.org/10.5194/aab-54-468-2011.

Sinclair KD, Garnsworthy PC, Mann GE, Sinclair LA. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal. 2014;8(2):262-74. http://dx.doi.org/10.1017/S1751731113002139. PMid:24290203.

Sinclair KD, Sinclair LA, Robinson JJ. Nitrogen metabolism and fertility in cattle: I. Adaptive changes in intake and metabolism to diets differing in their rate of energy and nitrogen release in the rumen. J Anim Sci. 2000;78(10):2659-69. http://dx.doi.org/10.2527/2000.78102659x. PMid:11048932.

Viana JHM, Camargo LSA, Ferreira AM, Sa WF, Fernandes CAC, Marques AP Jr. Short intervals between ultrasonographically guided follicle aspiration improve oocyte quality but do not prevent establishment of dominant follicles in the Gir breed (Bos indicus) of cattle. Anim Reprod Sci. 2004;84(1-2):1-12. http://dx.doi.org/10.1016/j.anireprosci.2003.12.002. PMid:15302383.

Yuan YQ, Van Soom A, Leroy JLMR, Dewulf J, Van Zeveren A, Kruif A, Peelman LJ. Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence. Theriogenology. 2005;63(8):2147-63. http://dx.doi.org/10.1016/j.theriogenology.2004.09.054. PMid:15826680.
 


Submitted date:
08/23/2021

Accepted date:
08/25/2022

631f3757a953953f985c9d83 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections