Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2022-0009
Animal Reproduction (AR)
ORIGINAL ARTICLE

Relationships of morphological and phototextural attributes of presumptive ovine zygotes and early embryos to their developmental competence in vitro: a preliminary assessment using time-lapse imaging

Karolina Fryc; Agnieszka Nowak; Barbara Kij-Mitka; Joanna Kochan; Maciej Murawski; Samantha Pena; Pawel Mieczyslaw Bartlewski

Downloads: 0
Views: 559

Abstract

Abstract: The assessment of morphology and digital image opacity may provide valuable information on the present embryo quality. Time-lapse imaging has been employed in research to establish a means of monitoring the dynamic nature of preimplantation embryo development. The aim of present study was to use time-lapse imaging for assessing various prospective morphometric and phototextural markers of the developmental potential of in vitro-derived ovine embryos. Oocytes were obtained by scarification of ovaries from nine Polish Longwool ewes. After in vitro maturation (IVM) and fertilization (IVF) of oocytes with fresh ram semen, the development of embryos to the blastocyst stage was monitored and evaluated using Primo Vision time-lapse imaging technology. Commercially available Image-Pro® Plus software was used to measure zona pellucida thickness, embryo diameter, total area of the perivitelline space, cellular grey-scale pixel intensity and cellular pixel heterogeneity. Statistical assessment of all attributes was done at various time points during embryo development (i.e., presumptive zygote stage: t(0); first cleavage detected at t(2) or t(3); and second cleavage detected at t(4) or t(6)). Out of thirty-seven zygotes analyzed in this study, five did not divide, 26 arrested before and six developed to the blastocyst stage. Our present results indicate that most parameters analyzed did not differ among embryos varying in their developmental fate except for the perivitelline space area that was greater (P<0.05) for non-dividing zygotes than future blastocysts at the presumptive zygote stage (4040±1850 vs. 857±262 µm2, respectively; means±SEM). Consequently, the measurement of perivitelline space at t(0) can potentially be used to prognosticate developmental potential of in vitro-produced ovine embryos albeit further confirmational studies are needed.

Keywords

sheep, in vitro embryo production, time-lapse imaging, morphology, phototexture

References

Aizawa R, Ibayashi M. Tatsumi T, Yamamoto A, Kokubo T, Miyasaka N, Sato K, Ikeda S, Minami N., Tsukamoto S. Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Development. 2019;146(22):dev181925. https://doi.org/10.1242/dev.181925.

Burruel V, Klooster K, Barker CM, Pera RR, Meyers S. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci Rep. 2014;4(1):6598. http://dx.doi.org/10.1038/srep06598. PMid:25307782.

Cruz M, Garrido N, Herrero J, Pérez-Cano I, Muñoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online. 2012;25(4):371-81. http://dx.doi.org/10.1016/j.rbmo.2012.06.017. PMid:22877944.

Current JZ, Whitaker BD. Effects of glucuronic acid and N-acetyl-D-glucosamine supplementation on the perivitelline space during the IVM of pig oocytes. Reprod Fertil Dev. 2020;32(10):941-7. http://dx.doi.org/10.1071/RD20109. PMid:32586424.

Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15-27. http://dx.doi.org/10.1530/REP-13-0251. PMid:24760880.

Feyeux M, Reignier A, Mocaer M, Lammers J, Meistermann D, Barrière P, Paul-Gilloteaux P, David L, Fréour T. Development of automated annotation software for human embryo morphokinetics. Hum Reprod. 2020;35(3):557-64. http://dx.doi.org/10.1093/humrep/deaa001. PMid:32163566.

Fryc K, Nowak A, Kij B, Kochan J, Bartlewski PM, Murawski M. Timing of cleavage divisions determined with time-lapse imaging is linked to blastocyst formation rates and quality of in vitro-produced ovine embryos. Theriogenology. 2021;159:147-52. http://dx.doi.org/10.1016/j.theriogenology.2020.10.031. PMid:33157452.

Gardner DK, Balaban B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and “OMICS”: is looking good still important? Mol Hum Reprod. 2016;22(10):704-18. http://dx.doi.org/10.1093/molehr/gaw057. PMid:27578774.

Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: fertility and genetics beyond. UK: Parthenon Publishing Carnforth; 1999.

Jameel T. Sperm swim-up: a simple and effective technique of semen processing for intrauterine insemination. J Pak Med Assoc. 2008;58(2):71-4. PMid:18333524.

Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, Kwon TH, Kong IK. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology. 2009;72(4):584-9. http://dx.doi.org/10.1016/j.theriogenology.2009.04.015. PMid:19501898.

Kij-Mitka B, Kochan J, Nowak A, Niżański W, Prochowska S, Fryc K, Bugno-Poniewierska M. Using time lapse monitoring for determination of morphological defect frequency in feline embryos after in Vitro Fertilization (IVF). Animals (Basel). 2019;10(1):1-7. PMid:31861394.

Kij-Mitka B, Kochan J, Fryc K, Niżański W, Prochowska S, Gabryś J, Nowak A, Bugno-Poniewierska M. The frequency of collapse as a predictor of feline blastocyst quality. Theriogenology. 2020;157:372-7. http://dx.doi.org/10.1016/j.theriogenology.2020.08.008. PMid:32862048.

Kochan J, Nowak A, Kij B, Prochowska S, Niżański W. Analysis of morphokinetic parameters of feline embryos using a time-lapse system. Animals (Basel). 2021a;11(3):748. http://dx.doi.org/10.3390/ani11030748. PMid:33803248.

Kochan J, Nowak A, Młodawska W, Prochowska S, Partyka A, Skotnicki J, Niżański W. Comparison of the morphology and developmental potential of oocytes obtained from prepubertal and adult domestic and wild cats. Animals (Basel). 2021b;11(1):20. http://dx.doi.org/10.3390/ani11010020. PMid:33374370.

Kochan J, Nowak A, Kij-Mitka B, Fryc K, Prochowska S, Niżański W. A comparisonof in vitro culture systems for cat embryos. Theriogenology. 2022;179:149-54. http://dx.doi.org/10.1016/j.theriogenology.2021.10.026. PMid:34875537.

Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, Distratis V, Borini A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online. 2017;34(2):137-46. http://dx.doi.org/10.1016/j.rbmo.2016.11.008. PMid:27938863.

Mandawala AA, Harvey SC, Roy TK, Fowler KE. Time lapse embryo imaging and morphokinetic profiling: towards a general characterisation of embryogenesis. Anim Reprod Sci. 2016;174:2-10. http://dx.doi.org/10.1016/j.anireprosci.2016.09.015. PMid:27720247.

Nasiri N, Eftekhari-Yazdi P. An overview of the available methods for morphological scoring of pre-implantation embryos in in vitro fertilization. Cell J. 2015;16(4):392-405. PMid:25685730.

Rienzi L, Ubaldi F, Iacobelli M, Romano S, Minasi MG, Ferrero S, Sapienza F, Baroni E, Greco E. Significance of morphological attributes of the early embryo. Reprod Biomed Online. 2005;10(5):669-81. http://dx.doi.org/10.1016/S1472-6483(10)61676-8. PMid:15949228.

Singh J, Pierson RA, Adams GP. Ultrasound image attributes of bovine ovarian follicles and endocrine and functional correlates. J Reprod Fertil. 1998;112(1):19-29. http://dx.doi.org/10.1530/jrf.0.1120019. PMid:9538326.

Ueno S, Niimura S. Size of perivitelline space and incidence of polyspermy in mouse oocytes matured in vivo and in vitro. J Mamm Ova Res. 2008;25(1):44-9. http://dx.doi.org/10.1274/jmor.25.44.

Van Soom A, Mateusen B, Leroy J, de Kruif A. Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reprod Biomed Online. 2003;7(6):664-70. http://dx.doi.org/10.1016/S1472-6483(10)62089-5. PMid:14748965.

Vanduzer T, Duggavathi R, Murawski M, Zieba DA, Sroka P, Bartlewski PM. Correlations among antral follicular echotexture, apoptosis and expression of key steroidogenic enzymes in sheep. J Reprod Dev. 2014;60(6):476-82. http://dx.doi.org/10.1262/jrd.2014-066. PMid:25109269.

VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-84. http://dx.doi.org/10.1093/humrep/deaa013. PMid:32240301.

Wang WH, Abeydeera LR, Prather RS, Day BN. Morphologic comparison of ovulated and in vitro-matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. Mol Reprod Dev. 1998;49(3):308-16. http://dx.doi.org/10.1002/(SICI)1098-2795(199803)49:3<308::AID-MRD11>3.0.CO;2-S. PMid:9491383.

Yoshida N, Niimura S. Size of the perivitelline space and incidence of polyspermy in rabbit and hamster oocytes. Reprod Med Biol. 2010;10(1):31-41. http://dx.doi.org/10.1007/s12522-010-0067-0. PMid:29662352.

Zaninovic N, Irani M, Meseguer M. Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: is there a relation to implantation and ploidy? Fertil Steril. 2017;108(5):722-9. http://dx.doi.org/10.1016/j.fertnstert.2017.10.002. PMid:29101997.

Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914-20. http://dx.doi.org/10.1016/j.fertnstert.2020.09.157. PMid:33160513.
 


Submitted date:
01/14/2021

Accepted date:
03/08/2022

624da8d9a9539567a2761e64 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections