Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2022-0080
Animal Reproduction (AR)
ORIGINAL ARTICLE

Effect of dosage of orally administered 17α-methyltestosterone on sex reversion of the yellowtail tetra Astyanax lacustris (Lütken, 1875)

Renata da Silva Farias; Karolayne Ribeiro da Silva Oliveira; Marília Espíndola de Souza; Dijaci Araújo Ferreira; Alluanan Adelson do Nascimento Silva; Valdemiro Amaro da Silva Júnior; Rex Dunham; Maria Raquel Moura Coimbra

Downloads: 1
Views: 579

Abstract

The females of yellowtail tetra (Astyanax lacustris), known as the freshwater sardine, are approximately 1.33 times larger than males, and thus, all-female monosex culture would increase production and reduce size variability. The present work aimed to identify the optimal dose of 17α-methyltestosterone (MT) to be used in the masculinization of A. lacustris for indirect sex reversal. Three different concentrations of MT (20, 40, and 60 mg/kg of feed in the diet) were fed to the fry for 30 days. Thirty adult individuals from each treatment, including the control (0 mg MT/kg), were evaluated for gonadal development, morphological and histological sexual identification, zootechnical performance, and the possible genotoxic effect caused by prolonged exposure to MT. MT significantly (P<0.01) affected the differentiation of the gonads, with the presence of possible inhibitory effects in all treatments. Intersex individuals were present in the 20 and 60 mg MT/kg treatments. All treatments were able to masculinize A. lacustris and the treatment with the lowest hormone concentration produced the highest percentage of males 76.7%, while the control had 46.7% males. The presence of erythrocyte nuclear alterations indicated a possible cytotoxic effect of MT in treatments 40 and 60 mg MT/kg, however, the use of the hormone did not affect the growth and the survival of the individuals. Thus, the use of MT is a viable option for obtaining neomales as a first step into the production of all-female progenies.

Keywords

biotechnology, neomale, phenotypic male, sex reversal

References

Abimorad EG, Castellani D. Exigências nutricionais de aminoácidos para o lambari-do-rabo amarelo baseadas na composição da carcaça e do músculo. Bol Inst Pesca. 2011;37(1):31-8.

Adolfi MC, Carreira ACO, Jesus LWO, Bogerd J, Funes RM, Schartl M, Sogayar MC, Borella MI. Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae. Reprod Biol Endocrinol. 2015;13(2):2-15. http://dx.doi.org/10.1186/1477-7827-13-2. PMid:25577427.

Agostinho AA, Gomes LC, Veríssimo S, Okada EK. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish. 2004;14:11-9. http://dx.doi.org/10.1007/s11160-004-3551-y.

Amer M, Zaki F, Tahoun A, Said M. Effects of 17 α-methyltestosterone and Tribulus terrestris extract on sex ratio and gonads histology of red Tilapia hybrid. Egypt J Nutr Feeds. 2021;24(2):189-98. http://dx.doi.org/10.21608/ejnf.2021.210947.

Araújo FG, Nascimento AA, Gomes ID, Sales A, Oliveira BAC. Gonadal development and reproductive period of the characin Astyanax aff. bimaculatus (Characiformes: Characidae) in a tropical reservoir in southeastern Brazil. Zoologia. 2019;36:1-14. http://dx.doi.org/10.3897/zoologia.36.e30610.

Barbieri G, Santos MVR, Santos J. Época de reprodução e peso/comprimento de duas espécies de Astyanax (Pisces, Characidae). Pesqui Agropecu Bras. 1982;17(7):1057-65.

Bem JC, Fontanetti CS, Senhorini JA, Parise-Maltempi PP. Effectiveness of estradiol valerate on sex reversion in Astyanax altiparanae (Characiformes, Characidae). Braz Arch Biol Technol. 2012;55(2):283-90. http://dx.doi.org/10.1590/S1516-89132012000200015.

Bombardelli RA, Hayashi C. Masculinização de larvas de tilápia do Nilo (Oreochromis niloticus L.) a partir de banhos de imersão com 17α-metiltestosterona. Rev Bras Zootec. 2005;34(2):365-72. http://dx.doi.org/10.1590/S1516-35982005000200002.

Budd A, Banh Q, Domingos J, Jerry D. Sex control in fish: Approaches, challenges and opportunities for aquaculture. J Mar Sci Eng. 2015;3(2):329-55. http://dx.doi.org/10.3390/jmse3020329.

Carrasco KR, Tilbury KL, Myers MS. Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci. 1990;47(11):2123-36. http://dx.doi.org/10.1139/f90-237.

Celik I, Guner Y, Celik P. Effect of orally-administered 17α-methyltestosterone at different doses on the sex reversal of the Nile Tilapia (Oreochromis niloticus, Linneaus 1758). J Anim Vet Adv. 2011;10(7):853-7. http://dx.doi.org/10.3923/javaa.2011.853.857.

Demska-Zakes K, Zakes Z. Effect of 17 alpha-methyltestosterone on gonadal differentiation in pikeperch, Stizostedion lucioperca L. Aquacult Res. 1997;28(1):59-63. http://dx.doi.org/10.1111/j.1365-2109.1997.tb01315.x.

Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208(3-4):191-364. http://dx.doi.org/10.1016/S0044-8486(02)00057-1.

Dunham RA. Aquaculture and fisheries biotechnology, genetic approaches. Wallingford: CABI; 2011. http://dx.doi.org/10.1079/9781845936518.0000.

El-Greisy ZA, El-Gamal AE. Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egypt J Aquat Res. 2012;38(1):59-66. http://dx.doi.org/10.1016/j.ejar.2012.08.005.

Fatima S, Adams M, Wilkinson R. Sex reversal of brook trout (Salvelinus fontinalis) by 17α-methyltestosterone exposure: A serial experimental approach to determine optimal timing and delivery regimes. Anim Reprod Sci. 2016;175:39-47. http://dx.doi.org/10.1016/j.anireprosci.2016.10.008. PMid:27802873.

Fonseca T, Costa-Pierce BA, Valenti WC. Lambari aquaculture as a means for the sustainable development of rural communities in Brazil. Rev Fish Sci Aquacult. 2017;25(4):316-30. http://dx.doi.org/10.1080/23308249.2017.1320647.

Furnus GNA, Caffetti JD, García EM, Benítez MF, Pastori MC, Fenocchio AS. Baseline micronuclei and nuclear abnormalities frequencies in native fishes from the Paraná River (Argentina). Braz J Biol. 2014;74(1):217-21. http://dx.doi.org/10.1590/1519-6984.13712. PMid:25055105.

Garutti V. Piscicultura ecológica. São Paulo: UNESP; 2003.

Instituto Brasileiro de Geografia e Estatística - IBGE. Pesquisa da Pecuária Municipal, PPM. Tabela 3940 - Produção da aquicultura, por tipo de produto [Internet]. 2020 [cited 2022 Jul 21]. Available from: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=resultados

Johnstone R, Macintosh DJ, Wright RS. Elimination of orally administered 17α-methyltestosterone by Oreochromis mossambicus (tilapia) and Salmo gairdneri (rainbow trout) juveniles. Aquaculture. 1983;35:249-57. http://dx.doi.org/10.1016/0044-8486(83)90095-9.

Karaket T, Reungkhajorn A, Ponza P. The optimum dose and period of 17α-methyltestosterone immersion on masculinization of red tilapia (Oreochromis spp.). Aquac Fish. 2023;8(2):174-9. http://dx.doi.org/10.1016/j.aaf.2021.09.001.

Kashe MM, Farsani AS, Mehrgan MS, Hosseini-Shekarabi SP. Effect of 17-α-methyl testosterone on the sex reversal of rainbow trout (Oncorhynchus mykiss). J Anim Environ. 2021;13(2):295-302. http://dx.doi.org/10.22034/AEJ.2021.137489.

Lázaro TM, Rocha NRA, Monzani PS, Nakaghi LSO, Senhorini JA, Yasui GS, Nascimento NF. Sperm quality of spontaneously occurring gynogenetic males in the yellowtail tetra Astyanax altiparanae. J Appl Ichthyology. 2021;37(6):909-15. http://dx.doi.org/10.1111/jai.14244.

Leonard JL. Transitions between sexual systems: understanding the mechanisms of, and pathways between, dioecy, hermaphroditism and other sexual systems. Switzerland: Springer; 2019.

Marjani M, Jamili S, Mostafavi PG, Ramin M, Mashinchia A. Influence of 17-alpha methyl testosterone on masculinization and growth in Tilapia (Oreochromis mossambicus). J Fish Aquat Sci. 2009;4(1):71-4. http://dx.doi.org/10.3923/jfas.2009.71.74.

Nascimento NF, Pereira-Santos M, Piva LH, Manzini B, Fujimoto T, Senhorini JA, Yasui GS, Nakaghi LSO. Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae. Aquaculture. 2017;471:163-71. http://dx.doi.org/10.1016/j.aquaculture.2017.01.007.

Navarro RD, Silva RF, Ribeiro OP Fo, Calado LL, Rezende FP, Silva CS, Santos LC. Comparação morfométrica e índices somáticos de machos e fêmeas do lambari prata (Astayanax scabripinnis Jerenyns, 1842) em diferente sistema de cultivo. Zootec Trop. 2006;24:165-76.

Pandian TJ, Sheela SG. Hormonal induction of sex reversal in fish. Aquaculture. 1995;138(1-4):1-22. http://dx.doi.org/10.1016/0044-8486(95)01075-0.

Piferrer F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture. 2001;197(1-4):229-81. http://dx.doi.org/10.1016/S0044-8486(01)00589-0.

Porto-Foresti F, Castilho-Almedia RB, Foresti F. Biologia e criação do lambari-do-rabo-amarelo (Astyanax altiparanae). In: Baldisserto B, Gomes LC, editors. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM; 2005. p. 105-20.

R Core Team. R: a language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2020 [cited 2022 Jul 21]. Available from: https://www.r-project.org/

Ribeiro AM, Risso WE, Fernandes MN, Martinez CBR. Lead accumulation and its effects on the branchial physiology of Prochilodus lineatus. Fish Physiol Biochem. 2014;40(3):645-57. http://dx.doi.org/10.1007/s10695-013-9873-8. PMid:24114347.

Rivero-Wendt CLG, Miranda-Vilela AL, Ferreira MFN, Borges AM, Grisolia CK. Cytogenetic toxicity and gonadal effects of 17 α-methyltestosterone in Astyanax bimaculatus (Characidae) and Oreochromis niloticus (Cichlidae). Genet Mol Res. 2013a;12(3):3862-70. http://dx.doi.org/10.4238/2013.September.23.4. PMid:24085447.

Rivero-Wendt CLG, Miranda-Vilela AL, Ferreira MFN, Amorim FS, da Silva VAG, Louvandini H, Grisolia CK. Lack of genotoxicity in Astyanax bimaculatus and Oreochromis niloticus of 17α-methyltestosterone used in fish hatcheries to produce male monosex populations. Genet Mol Res. 2013b;12(4):5013-22. http://dx.doi.org/10.4238/2013.October.24.14. PMid:24301763.

Samanta S, Dey P. Micronucleus and its applications. Diagn Cytopathol. 2012;40(1):84-90. http://dx.doi.org/10.1002/dc.21592. PMid:22180242.

Shen Z-G, Fan Q-X, Yang W, Zhang Y-L, Wang H-P. Effects of 17α-methyltestosterone and aromatase inhibitor letrozole on sex reversal, gonadal structure, and growth in yellow catfish Pelteobagrus fulvidraco. Biol Bull. 2015;228(2):108-17. http://dx.doi.org/10.1086/BBLv228n2p108. PMid:25920714.

Silva DA, Pessoa EKR, Costa SAGL, Chellappa NT, Chellappa S. Ecologia Alimentar de Astyanax lacustris (Osteichthyes: Characidae) na Lagoa do Piató, Assu, Rio Grande do Norte, Brasil. Biota Amazôn. 2012;2(1):74-82. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v2n1p74-82.

Silva RZC, Alvarenga ÉR, Matta SV, Alves GFO, Manduca LG, Silva MA, Yoshinaga TT, Fernandes AFA, Turra EM. Masculinization protocol for Nile tilapia (O. niloticus) in Biofloc technology using 17-α-methyltestosterone in the diet. Aquaculture. 2022;547:737470. http://dx.doi.org/10.1016/j.aquaculture.2021.737470.

Stevanato DJ, Ostrensky A. Ontogenetic development of tetra Astyanax lacustris (Characiformes: characidae). Neotrop Ichthyol. 2018;16(2):e170073. http://dx.doi.org/10.1590/1982-0224-20170073.

Súarez YR, Silva EA, Viana LF. Reproductive biology of Astyanax lacustris (Characiformes: Characidae) in the southern Pantanal floodplain, upper Paraguay River basin, Brazil. Environ Biol Fishes. 2017;100(7):775-83. http://dx.doi.org/10.1007/s10641-017-0604-3.

Sulaeman FR, Fotedar R. Masculinization of silver perch (Bidyanus bidyanus Mitchell 1838) by dietary supplementation of 17α-methyltestosterone. Egypt J Aquat Res. 2017;43(1):109-16. http://dx.doi.org/10.1016/j.ejar.2016.10.002.

Thanasupsin SP, Chheang L, Math C. Ecological risk of 17α-methyltestosterone contaminated water discharged from a full water recirculating earthen masculinization pond. Hum Ecol Risk Assess. 2021;27(6):1696-714. http://dx.doi.org/10.1080/10807039.2021.1871845.

Toledo-Filho SA, Foresti F, Almeida-Toledo LF. Biotecnologia genética aplicada a Piscicultura. São Paulo: Departamento de Biologia-CCS/USP; 1996. (Cadernos de Ictiogenética; no. 3).

Valenti WC, Barros HP, Moraes-Valenti P, Bueno GW, Cavalli RO. Aquaculture in Brazil: past, present and future. Aquacult Rep. 2021;19:100611. http://dx.doi.org/10.1016/j.aqrep.2021.100611.

Valladão GMR, Gallani SU, Pilarski F. South American fish for continental aquaculture. Rev Aquacult. 2018;10(2):351-69. http://dx.doi.org/10.1111/raq.12164.

Viana LF, Súarez YR, Cardoso CAL, Solórzano JCJ, Crispim BDA, Grisolia AB, Lima-Junior SE. Erythrocyte nuclear abnormalities in Astyanax lacustris in response to landscape characteristics in two neotropical streams. Arch Environ Contam Toxicol. 2018;75(2):327-34. http://dx.doi.org/10.1007/s00244-017-0476-8. PMid:29147789.

Weiss LA, Bernardes JJ Jr, Machado C, Oliveira-Nuñer AP. Masculinization of South American catfish (Rhamdia quelen) through dietary administration of 17α-methyltestosterone. Rev Colomb Cienc Pecu. 2018a;31(4):304-14. http://dx.doi.org/10.17533/udea.rccp.v31n4a07.

Weiss LA, Bernardes JJ Jr, Nuñer APO. Identification of neomales in South American catfish Rhamdia quelen on the basis of the sex ratio in the progeny. Anim Reprod. 2018b;14(Suppl. 1):1285-92. http://dx.doi.org/10.21451/1984-3143-AR0031.
 


Submitted date:
09/08/2022

Accepted date:
12/31/2022

6400aa21a95395158e719de3 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections