Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2022-0084
Animal Reproduction (AR)
ORIGINAL ARTICLE

Oxidative activity of corpus luteum and ovarian parenchyma in Bos taurus indicus heifers

Suellen Miguez González; Marcela Bortoletto Cerezetti; Larissa Zamparone Bergamo; Camila Rodrigues Ferraz; Waldiceu Aparecido Verri Junior; Marcelo Marcondes Seneda

Downloads: 1
Views: 337

Abstract

Abstract: The aim of this study was to evaluate the oxidative stress in ovaries and corpus luteum (CL) of Bos taurus indicus females and the oxidant effect of CL in ovarian tissues in regions near, intermediate, or distant from it. Ovaries (n=12) of Nelore heifers (n=6) were collected from a slaughterhouse and fragmented. Experiment 1, each ovary was obtained from three fragments, resulting in 18 fragments of ovaries with CL (OV+CL) and another 18 fragments of ovaries without CL (OV-CL). Three fragments were generated from CL, totaling 18 CL fragments. In experiment 2, the ovarian fragments were removed from specific regions near, intermediate, or distant from the CL. All the fragments were placed in Eppendorf-type microtubes (1 mL), kept in a thermal container at 4 ºC, and then stored in a -80 ºC freezer for analysis of oxidative stress (TBARS and NBT) and antioxidant potential (FRAP and ABTS). In the antioxidant activity analysis, luteal tissues showed more antioxidant activity than ovarian tissue (FRAP = P < 0.0001; ABTS = P < 0.02). In the oxidative stress analysis, CL had lower levels of reactive oxygen species (ROS; TBARS = P < 0.03; NBT = P < 0.0001) than ovarian tissues. There was no difference in antioxidant activity and oxidative stress between the fragments obtained from different regions (OV+CL versus OV-CL; P > 0.05). The presence of CL in the ovaries of Bos taurus indicus females did not influence the oxidative stress or antioxidant potential of the gonad. Thus, the removal of ovarian fragments with or without the presence of CL indicates that biotechnologies such as in vitro follicle cultivation is possible.

Keywords

bovine, free radicals, luteal tissue, ovarian tissue, ROS

References

Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829-43. http://dx.doi.org/10.1016/S0015-0282(02)04948-8. PMid:12749418.

Al-Gubory KH, Bolifraud P, Germain G, Nicole A, Ceballos-Picot I. Antioxidant enzymatic defence systems in sheep corpus luteum throughout pregnancy. Reproduction. 2004;128(6):767-74. http://dx.doi.org/10.1530/rep.1.00389. PMid:15579594.

Al-Gubory KH, Camous S, Germain G, Bolifraud P, Nicole A, Ceballos-Picot I. Reconsideration of the proposed luteotropic and luteoprotective actions of ovine placental lactogen in sheep: in vivo and in vitro studies. J Endocrinol. 2006;188(3):559-68. http://dx.doi.org/10.1677/joe.1.06550. PMid:16522735.

Al-Gubory KH, Ceballos-Picot I, Nicole A, Bolifraud F, Germain G, Michaud M, Mayeur C, Blachier F. Changes in activities of superoxide dismutase, nitric oxide synthase, glutathione-dependent enzymes and the incidence of apoptosis in sheep corpus luteum during the estrous cycle. Biochim Biophys Acta. 2005;1725(3):348-57. http://dx.doi.org/10.1016/j.bbagen.2005.06.018. PMid:16055271.

Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online. 2012;25(6):551-60. http://dx.doi.org/10.1016/j.rbmo.2012.08.004. PMid:23063822.

Amaral CS, Correa GRE, Mujica LKS, Fiorenza MF, Rosa SG, Nogueira CW, Portela VM, Comim FV, Schoenau W, Smirnova NP, Antoniazzi AQ. Heat stress modulates polymorphonuclear cell response in early pregnancy cows: I. interferon pathway and oxidative stress. PLoS One. 2021;16(9):e0257418. http://dx.doi.org/10.1371/journal.pone.0257418. PMid:34543299.

Arianmanesh M, Mcintosh R, Lea RG, Fowler PA, Algubory KH. Ovine corpus luteum proteins, with functions including oxidative stress and lipid metabolism, show complex alterations during implantation. J Endocrinol. 2011;210(1):47-58. http://dx.doi.org/10.1530/JOE-10-0336. PMid:21478226.

Arredondo F, Noble LS. Endocrinology of recurrent pregnancy loss. Semin Reprod Med. 2006;24(1):33-9. http://dx.doi.org/10.1055/s-2006-931799. PMid:16418976.

Ávila J, González-Fernández R, Rotoli D, Hernández J, Palumbo A. Oxidative stress in granulosa-lutein cells from in-vitro fertilization patients. Reprod Sci. 2016;23(12):1656-61. http://dx.doi.org/10.1177/1933719116674077. PMid:27821562.

Ayres H, Ferreira RM, Torres-Júnior JRS, Demétrio CGB, Lima CG, Baruselli PS. Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livest Sci. 2009;123(2-3):175-9. http://dx.doi.org/10.1016/j.livsci.2008.11.004.

Bergamo LZ, Bonato DV, Bizarro-Silva C, Bonato FGC, González SM, Rossaneis AC, Verri WA Jr, Morotti F, Seneda MM. Culture of preantral ovarian follicles of Bos taurus indicus with alpha-lipoic acid. Zygote. 2022;30(2):206-12. http://dx.doi.org/10.1017/S0967199421000502. PMid:34431472.

Cerezetti MB, González SM, Ferraz CR, Verri WA Jr, Rabelo EA, Seneda MM, Morotti F. Impact of the antioxidant quercetin on morphological integrity and follicular development in the in vitro culture of Bos indicus female ovarian fragments. In Vitro Cell Dev Biol Anim. 2021;57(9):856-64. http://dx.doi.org/10.1007/s11626-021-00629-8. PMid:34748153.

Diskin MG, Morris DG. Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim. 2008;43(Suppl 2):260-7. http://dx.doi.org/10.1111/j.1439-0531.2008.01171.x. PMid:18638133.

Fang X, Chen C, Cai J, Xiang E, Li J, Chen P. Genome-wide methylation study of whole blood cells DNA in men with congenital hypopituitarism disease. Int J Mol Med. 2019;43(1):155-66. http://dx.doi.org/10.3892/ijmm.2018.3945. PMid:30365064.

Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18(4):502-19. http://dx.doi.org/10.1210/edrv.18.4.0308. PMid:9267762.

Hajarian H, Shahsavari MH, Karami-shabankareh H, Dashtizad M. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reprod Biol. 2016;16(1):47-52. http://dx.doi.org/10.1016/j.repbio.2015.12.007. PMid:26952753.

Jin F, Ruan X, Juan D, Li Y, Cheng J, Wang H, Mueck AO. Ovarian tissue cryopreservation: prospective randomized study on thawed ovarian tissue viability to estimate the maximum possible delivery time of tissue samples. Gynecol Endocrinol. 2019;35(7):591-4. http://dx.doi.org/10.1080/09513590.2019.1572736. PMid:30777495.

Jones LA, Anthony JP, Henriquez FL, Lyons RE, Nickdel MB, Carter KC, Alexander J, Roberts CW. Toll-like receptor-4- mediated macrophage activation is differentially regulated by progesterone via the glucocorticoid and progesterone receptors. Immunology. 2008;125(1):59-69. http://dx.doi.org/10.1111/j.1365-2567.2008.02820.x. PMid:18373668.

Katalinic D, Modun D, Music I, Boban M. Gender differences in antioxidant capacity of rat tissues determined by 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp Biochem Physiol C Toxicol Pharmacol. 2005;140(1):47-52. http://dx.doi.org/10.1016/j.cca.2005.01.005. PMid:15792622.

Kato H, Sugino N, Takiguchi S, Kashida S, Nakamura Y. Roles of reactive oxygen species in the regulation of luteal function. Rev Reprod. 1997;2(2):81-3. http://dx.doi.org/10.1530/ror.0.0020081. PMid:9414469.

Miszkiel G, Skarzynski D, Bogacki M, Kotwica J. Concentrations of catecholamines, ascorbic acid, progesterone and oxytocin in the corpora lutea of cyclic and pregnant cattle. Reprod Nutr Dev. 1999;39(4):509-16. http://dx.doi.org/10.1051/rnd:19990410. PMid:10493156.

Niringiyumukiza JD, Cai H, Chen L, Li Y, Wang L, Zhang M, Xu X, Xiang W. Protective properties of glycogen synthase kinase-3 inhibition against doxorubicin-induced oxidative damage to mouse ovarian reserve. Biomed Pharmacother. 2019;116:108963. http://dx.doi.org/10.1016/j.biopha.2019.108963. PMid:31125824.

Peltier M, Tee S, Smulian L. Does progesterone lower innate immunity to pathogens associated with preterm birth? Am J Obstet Gynecol. 2006;195(6):S69. http://dx.doi.org/10.1016/j.ajog.2006.10.217.

Petroff BK, Dabrowski K, Ciereszko RE, Ottobre JS. Total ascorbate and dehydroascorbate concentrations in porcine ovarian stroma, follicles and corpora lutea throughout the estrous cycle and pregnancy. Theriogenology. 1997;47(6):1265-73. http://dx.doi.org/10.1016/S0093-691X(97)00106-4. PMid:16728075.

Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, Cunha TM, Alves-Filho JC, Cunha FQ, Casagrande R, Verri WA Jr. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem. 2016;33:8-14. http://dx.doi.org/10.1016/j.jnutbio.2016.03.013. PMid:27260463.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7. http://dx.doi.org/10.1016/S0891-5849(98)00315-3. PMid:10381194.

Rizzo A, Minoia G, Trisolini C, Manca R, Sciorsci RL. Concentrations of free radicals and beta-endorphins in repeat breeder cows. Anim Reprod Sci. 2007;100(3-4):257-63. http://dx.doi.org/10.1016/j.anireprosci.2006.08.013. PMid:16989966.

Rizzo A, Roscino MT, Minoia G, Trisolini C, Spedicato M, Mutinati M, Pantaleo M, Jirillo F, Sciorsci RL. Serum levels of reactive oxygen species (ROS) in the bitch. Immunopharmacol Immunotoxicol. 2009;31(2):310-3. http://dx.doi.org/10.1080/08923970802683954. PMid:19235534.

Sugino N, Karube-Harada A, Taketani T, Sakata A, Nakamura Y. Withdrawal of ovarian steroids stimulates prostaglandin F2α production through nuclear factor-κB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev. 2004;50(2):215-25. http://dx.doi.org/10.1262/jrd.50.215. PMid:15118249.

Sugino N, Nakamura Y, Takeda O, Ishimatsu M, Kato H. Changes in activities of superoxide dismutase and lipid peroxide in corpus luteum during pregnancy in rats. J Reprod Fertil. 1993;97(2):347-51. http://dx.doi.org/10.1530/jrf.0.0970347. PMid:8501704.

Sugino N, Takiguchi S, Kashida S, Karube A, Nakamura Y, Kato H. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod. 2000;6(1):19-25. http://dx.doi.org/10.1093/molehr/6.1.19. PMid:10611256.

Sugino N. Roles of reactive oxygen species in the corpus luteum. Anim Sci J. 2006;77(6):556-65. http://dx.doi.org/10.1111/j.1740-0929.2006.00386.x.

Tropea A, Miceli F, Minici F, Tiberi F, Orlando M, Gangale MF, Romani F, Catino S, Mancuso S, Navarra P, Lanzone A, Apa R. Regulation of vascular endothelial growth factor synthesis and release by human luteal cells in vitro. J Clin Endocrinol Metab. 2006;91(6):2303-9. http://dx.doi.org/10.1210/jc.2005-2457. PMid:16595603.

Wang Q, Lu G, Xie Z, Li H, Shen M. Effect of moxibustion on Nrf2/HO-1 signaling pathway in rats with diminished ovarian reserve. Zhongguo Zhen Jiu. 2021;41(1):53-8. http://dx.doi.org/10.13703/j.0255-2930.20191128-k0005. PMid:33559443.

Wang Y, Yang C, Elsheikh NAH, Li C, Yang F, Wang G, Li L. HO‐1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging. 2019;11(15):5535-47. http://dx.doi.org/10.18632/aging.102136. PMid:31404912.

Xu H, Mu X, Ding Y, Tan Q, Liu X, He J, Gao R, Li N, Geng Y, Wang Y, Chen X. Melatonin alleviates benzo(a)pyrene-induced ovarian corpus luteum dysfunction by suppressing excessive oxidative stress and apoptosis. Ecotoxicol Environ Saf. 2021;207:111561. http://dx.doi.org/10.1016/j.ecoenv.2020.111561. PMid:33254415.
 


Submitted date:
09/15/2022

Accepted date:
06/24/2023

64ee45bba9539557451f1c92 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections