Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0013
Animal Reproduction (AR)
ORIGINAL ARTICLE

The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C

Qimeng Hu

Downloads: 0
Views: 18

Abstract

More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation. The addition of different doses of ZnO NPs to stored sperm did not induce significant effects on the sperm motility and ATP content when compared to the sperm without ZnO NPs treatment. However, the addition of 50, 100, 200 μg/mL ZnO NPs to stored sperm improved total antioxidant capacity (T-AOC) and CuZn-superoxide dismutase (CuZn-SOD) (p < 0.05). ZnO NPs also reduced the malondialdehyde (MDA) content of the preserved sperm (p < 0.05). Moreover, our results indicate that the supplementation of 50 μg/mL ZnO NPs to preserved sperm improved the sperm membrane integrity (p < 0.05). ZnO NPs exerted protective effects on protein tyrosine phosphorylation, especially with regards to membrane proteins. Following incubation and capacitation, sperm exhibited good levels of protein tyrosine phosphorylation and ATP levels with high T-AOC and CuZn-SOD activity and low MDA content. ZnO NPs exerted protective capacity to a preservation extender used for SP-free boar sperm during storage at 17 °C. The optimal concentration of ZnO NPs for preservation extender was 50 μg/mL.

Keywords

capacitation, sperm, protein, oxidative stress

References

Björndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16(1):23-9. http://doi.org/10.1093/molehr/gap099. PMid:19933313.

Breitbart H, Cohen G, Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction. 2005;129(3):263-8. http://doi.org/10.1530/rep.1.00269. PMid:15749953.

Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod. 2003;68(3):837-45. http://doi.org/10.1095/biolreprod.102.009233. PMid:12604633.

Britto FA, Cortade F, Belloum Y, Blaquière M, Gallot YS, Docquier A, Pagano AF, Jublanc E, Bendridi N, Koechlin-Ramonatxo C, Chabi B, Francaux M, Casas F, Freyssenet D, Rieusset J, Giorgetti-Peraldi S, Carnac G, Ollendorff V, Favier FB. Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biol. 2018;16(1):65. http://doi.org/10.1186/s12915-018-0525-4. PMid:29895328.

Brohi RD, Huo LJ. Posttranslational modifications in spermatozoa and effects on male fertility and sperm viability. OMICS. 2017;21(5):245-56. http://doi.org/10.1089/omi.2016.0173. PMid:28481731.

Cabello-Agüeros JF, Hernández-González EO, Mújica A. The role of F-actin cytoskeleton-associated gelsolin in the guinea pig capacitation and acrosome reaction. Cell Motil Cytoskeleton. 2003;56(2):94-108. http://doi.org/10.1002/cm.10135. PMid:14506707.

Darves-Bornoz A, Panken E, Brannigan RE, Halpern JA. Robotic surgery for male infertility. Urol Clin North Am. 2021;48(1):127-35. http://doi.org/10.1016/j.ucl.2020.09.009. PMid:33218587.

Eagle GR, Zombola RR, Himes RH. Tubulin-zinc interactions: binding and polymerization studies. Biochemistry. 1983;22(1):221-8. http://doi.org/10.1021/bi00270a032. PMid:6403030.

Feng TY, Lv DL, Zhang X, Du YQ, Yuan YT, Chen MJ, Xi HM, Li Y, Han N, Hu JH. Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17 °C via AMPK activation. Reprod Domest Anim. 2020;55(12):1714-24. http://doi.org/10.1111/rda.13828. PMid:32969084.

Fu J, Li YH, Wang LR, Zhen LQ, Yang QZ, Li PF, Li XH. Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17 °C. Theriogenology. 2017;102:87-97. http://doi.org/10.1016/j.theriogenology.2017.07.020. PMid:28756326.

González-Abreu D, García-Martínez S, Fernández-Espín V, Romar R, Gadea J. Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization. Theriogenology. 2017;92:14-23. http://doi.org/10.1016/j.theriogenology.2017.01.016. PMid:28237329.

Holst BS, Larsson B, Rodriguez-Martinez H, Lagerstedt AS, Linde-Forsberg C. Zona pellucida binding assay-a method for evaluation of canine spermatozoa. J Reprod Fertil Suppl. 2001;57:137-40. PMid:11787140.

Juyena NS, Stelletta C. Seminal plasma: an essential attribute to spermatozoa. J Androl. 2012;33(4):536-51. http://doi.org/10.2164/jandrol.110.012583. PMid:22016346.

Kumaran RS, Choi YK, Singh V, Kim KJ, Kim HJ. Cytotoxic effects of ZnO nanoparticles on the expression of ROS-responsive genes in the human cell lines. J Nanosci Nanotechnol. 2016;16(1):210-8. http://doi.org/10.1166/jnn.2016.10746. PMid:27398447.

Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(Suppl 1):15-21. http://doi.org/10.1093/humrep/10.suppl_1.15. PMid:8592032.

Leahy T, Gadella BM. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction. 2011;142(6):759-78. http://doi.org/10.1530/REP-11-0310. PMid:21964828.

Lee SH, Park CK. Antioxidative effects of magnetized extender containing bovine serum albumin on sperm oxidative stress during long-term liquid preservation of boar semen. Biochem Biophys Res Commun. 2015;464(2):467-72. http://doi.org/10.1016/j.bbrc.2015.06.159. PMid:26143531.

Marzec-Wróblewska U, Kamiński P, Lakota P, Szymański M, Wasilow K, Ludwikowski G, et al. Zinc and iron concentration and SOD activity in human semen and seminal plasma. Biol Trace Elem Res. 2011;143(1):167-77. http://doi.org/10.1007/s12011-010-8868-x. PMid:20924714.

Moore GD, Ayabe T, Visconti PE, Schultz RM, Kopf GS. Roles of heterotrimeric and monomeric G proteins in sperm-induced activation of mouse eggs. Development. 1994;120(11):3313-23. http://doi.org/10.1242/dev.120.11.3313. PMid:7720569.

Nabeel AHT, Jeon Y, Yu I-J. Use of polyvinyl alcohol as a chemically defined compound in egg yolk-free extender for dog sperm cryopreservation. Reprod Domest Anim. 2019;54(11):1449-58. http://doi.org/10.1111/rda.13547. PMid:31381179.

Naresh S, Atreja SK. The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology. 2015;70(3):211-6. http://doi.org/10.1016/j.cryobiol.2015.03.008. PMid:25828199.

Prapaiwan N, Tharasanit T, Punjachaipornpol S, Yamtang D, Roongsitthichai A, Moonarmart W, Kaeoket K, Manee-In S. Low-density lipoprotein improves motility and plasma membrane integrity of cryopreserved canine epididymal spermatozoa. Asian-Australas J Anim Sci. 2016;29(5):646-51. http://doi.org/10.5713/ajas.15.0572. PMid:26954170.

Qamar AY, Fang X, Bang S, Shin ST, Cho J. The effect of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod Domest Anim. 2020;55(9):1163-71. http://doi.org/10.1111/rda.13758. PMid:32602977.

Quinn PJ. Deoxyribonuclease activity in semen. J Reprod Fertil. 1968;17(1):35-9. http://doi.org/10.1530/jrf.0.0170035. PMid:5748741.

Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063-77. http://doi.org/10.1517/17425247.2010.502560. PMid:20716019.

Tardif S, Dubé C, Bailey JL. Porcine sperm capacitation and tyrosine kinase activity are dependent on bicarbonate and calcium but protein tyrosine phosphorylation is only associated with calcium. Biol Reprod. 2003;68(1):207-13. http://doi.org/10.1095/biolreprod.102.005082. PMid:12493715.

Tardif S, Dubé C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod. 2001;65(3):784-92. http://doi.org/10.1095/biolreprod65.3.784. PMid:11514342.

Tulsiani DR, NagDas SK, Skudlarek MD, Orgebin-Crist MC. Rat sperm plasma membrane mannosidase: localization and evidence for proteolytic processing during epididymal maturation. Dev Biol. 1995;167(2):584-95. http://doi.org/10.1006/dbio.1995.1050. PMid:7875380.

Yeste M, Rodríguez-Gil JE, Bonet S. Artificial insemination with frozen-thawed boar sperm. Mol Reprod Dev. 2017;84(9):802-13. http://doi.org/10.1002/mrd.22840. PMid:28608609.

Zhang XG, Li H, Wang L, Hao YY, Liang GD, Ma YH, Yang GS, Hu JH. The effects of different levels of superoxide dismutase in Modena on boar semen quality during liquid preservation at 17 °C. Anim Sci J. 2017;88(1):55-62. http://doi.org/10.1111/asj.12574. PMid:27112417.

Zhen L, Wang LR, Fu JL, Li YH, Zhao N, Li XH. Hexavalent chromium affects sperm motility by influencing protein tyrosine phosphorylation in the midpiece of boar spermatozoa. Reprod Toxicol. 2016;59:66-79. http://doi.org/10.1016/j.reprotox.2015.11.001. PMid:26582256.
 


Submitted date:
01/21/2023

Accepted date:
11/18/2024

6787ddf0a9539564c623fc73 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections