Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0058
Animal Reproduction (AR)
Thematic Section: 36th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production

Marcia de Almeida Monteiro Melo Ferraz; Giuliana de Avila Ferronato

Downloads: 1
Views: 515

Abstract

Traditional methods of gamete handling, fertilization, and embryo culture often face limitations in efficiency, consistency, and the ability to closely mimic in vivo conditions. This review explores the opportunities presented by microfluidic and 3D culture systems in overcoming these challenges and enhancing in vitro embryo production. We discuss the basic principles of microfluidics, emphasizing their inherent advantages such as precise control of fluid flow, reduced reagent consumption, and high-throughput capabilities. Furthermore, we delve into microfluidic devices designed for gamete manipulation, in vitro fertilization, and embryo culture, highlighting innovations such as droplet-based microfluidics and on-chip monitoring. Next, we explore the integration of 3D culture systems, including the use of biomimetic scaffolds and organ-on-a-chip platforms, with a particular focus on the oviduct-on-a-chip. Finally, we discuss the potential of these advanced systems to improve embryo production outcomes and advance our understanding of early embryo development. By leveraging the unique capabilities of microfluidics and 3D culture systems, we foresee significant advancements in the efficiency, effectiveness, and clinical success of in vitro embryo production.

Keywords

bioprinting, microfluidic, embryo development, biotechnologies

References

Ahn J, Yoon M-J, Hong S-H, Cha H, Lee D, Koo HS, Ko J-E, Lee J, Oh S, Jeon NL, Kang Y-J. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36(10):2720-31. http://dx.doi.org/10.1093/humrep/deab186. PMid:34363466.

Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, Yu X, Liu B. A microfluidic device for culturing an encapsulated ovarian follicle. Micromachines. 2017;8(11):335. http://dx.doi.org/10.3390/mi8110335. PMid:30400524.

Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015-24. http://dx.doi.org/10.1242/jcs.079509. PMid:22797912.

Beckham J, Alam F, Omojola V, Scherr T, Guitreau A, Melvin A, Park DS, Choi JW, Tiersch TR, Monroe WT. A microfluidic device for motility and osmolality analysis of zebrafish sperm. Biomed Microdevices. 2018;20(3):67. http://dx.doi.org/10.1007/s10544-018-0308-2. PMid:30090952.

Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002;4(1):261-86. http://dx.doi.org/10.1146/annurev.bioeng.4.112601.125916. PMid:12117759.

Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo B-H, Devadoss C. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci USA. 2000;97(25):13488-93. http://dx.doi.org/10.1073/pnas.250273097. PMid:11087831.

Berendsen JTW, Eijkel JCT, Wetzels AM, Segerink LI. Separation of spermatozoa from erythrocytes using their tumbling mechanism in a pinch flow fractionation device. Microsyst Nanoeng. 2019;5(1):24. http://dx.doi.org/10.1038/s41378-019-0068-z. PMid:31123596.

Berendsen JTW, Kruit SA, Atak N, Willink E, Segerink LI. Flow-free microfluidic device for quantifying chemotaxis in spermatozoa. Anal Chem. 2020;92(4):3302-6. http://dx.doi.org/10.1021/acs.analchem.9b05183. PMid:31994387.

Berenguel-Alonso M, Sabés-Alsina M, Morató R, Ymbern O, Rodríguez-Vázquez L, Talló-Parra O, Alonso-Chamarro J, Puyol M, López-Béjar M. Rapid prototyping of a cyclic olefin copolymer microfluidic device for automated oocyte culturing. SLAS Technol. 2017;22(5):507-17. http://dx.doi.org/10.1177/2472630316684625. PMid:28944724.

Berthier E, Young EWK, Beebe D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip. 2012;12(7):1224-37. http://dx.doi.org/10.1039/c2lc20982a. PMid:22318426.

Bouillon C, Léandri R, Desch L, Ernst A, Bruno C, Cerf C, Chiron A, Souchay C, Burguet A, Jimenez C, Sagot P, Fauque P. Does embryo culture medium influence the health and development of children born after in vitro fertilization? PLoS One. 2016;11(3):e0150857. http://dx.doi.org/10.1371/journal.pone.0150857. PMid:27008092.

Canovas S, Ross PJ, Kelsey G, Coy P. DNA methylation in embryo development: epigenetic impact of ART (Assisted Reproductive Technologies). BioEssays. 2017;39(11):1700106. http://dx.doi.org/10.1002/bies.201700106. PMid:28940661.

Carrel A. On the permanent life of tissues outside of the organism. J Exp Med. 1912;15(5):516-28. http://dx.doi.org/10.1084/jem.15.5.516. PMid:19867545.

Choi JK, Agarwal P, Huang H, Zhao S, He X. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials. 2014;35(19):5122-8. http://dx.doi.org/10.1016/j.biomaterials.2014.03.028. PMid:24702961.

Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5(11):1229-32. http://dx.doi.org/10.1039/b504397m. PMid:16234945.

Comizzoli P. Biotechnologies for wildlife fertility preservation. Anim Front. 2015;5(1):73-8. http://dx.doi.org/10.2527/af.2015-0011.

De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium on-a-chip reveals insulin- and glucose-induced alterations in the transcriptome and proteomic secretome. Endocrinology. 2021;162(6):bqab054. http://dx.doi.org/10.1210/endocr/bqab054. PMid:33693651.

Di Caprio G, Ferrara MA, Miccio L, Merola F, Memmolo P, Ferraro P, Coppola G. Holographic imaging of unlabelled sperm cells for semen analysis: a review. J Biophotonics. 2015;8(10):779-89. http://dx.doi.org/10.1002/jbio.201400093. PMid:25491593.

Eaton NL, Niemeyer GP, Doody MC. The use of an alginic acid matrix to support in vitro development of isolated murine blastomeres. J In Vitro Fert Embryo Transf. 1990;7(1):28-32. http://dx.doi.org/10.1007/BF01133880. PMid:2338512.

El-Sherry TM, Elsayed M, Abdelhafez HK, Abdelgawad M. Characterization of rheotaxis of bull sperm using microfluidics. Integr Biol. 2014;6(12):1111-21. http://dx.doi.org/10.1039/C4IB00196F. PMid:25291967.

Esteves TC, van Rossem F, Nordhoff V, Schlatt S, Boiani M, Le Gac S. A microfluidic system supports single mouse embryo culture leading to full-term development. RSC Advances. 2013;3(48):26451. http://dx.doi.org/10.1039/c3ra44453h.

Ferraz MAMM, Henning HHW, Costa PF, Malda J, Le Gac S, Bray F, van Duursen MBM, Brouwers JF, van de Lest CHA, Bertijn I, Kraneburg L, Vos PLAM, Stout TAE, Gadella BM. Potential health and environmental risks of three-dimensional engineered polymers. Environ Sci Technol Lett. 2018a;5(2):80-5. http://dx.doi.org/10.1021/acs.estlett.7b00495. PMid:29911125.

Ferraz MAMM, Henning HHW, Costa PF, Malda J, Melchels FP, Wubbolts R, Stout TAE, Vos PLAM, Gadella BM. Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab Chip. 2017;17(5):905-16. http://dx.doi.org/10.1039/C6LC01566B. PMid:28194463.

Ferraz MAMM, Nagashima JB, Venzac B, Le Gac S, Songsasen N. 3D printed mold leachates in PDMS microfluidic devices. Sci Rep. 2020a;10(1):994. http://dx.doi.org/10.1038/s41598-020-57816-y. PMid:31969661.

Ferraz MAMM, Nagashima JB, Venzac B, Le Gac S, Songsasen N. A dog oviduct-on-a-chip model of serous tubal intraepithelial carcinoma. Sci Rep. 2020b;10(1):1575. http://dx.doi.org/10.1038/s41598-020-58507-4. PMid:32005926.

Ferraz MAMM, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Hölker M, Besenfelder U, Mokry M, Vos PLAM, Stout TAE, Le Gac S, Gadella BM. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun. 2018b;9(1):4934. http://dx.doi.org/10.1038/s41467-018-07119-8. PMid:30467383.

Ferronato GA, Santos CM, Rosa PMS, Bridi A, Perecin F, Meirelles FV, Sangalli JR, Silveira JC. Bovine in vitro oocyte maturation and embryo culture in liquid marbles 3D culture system. PLoS One. 2023;18(4):e0284809. http://dx.doi.org/10.1371/journal.pone.0284809. PMid:37083878.

Fullerton JN, Frodsham GCM, Day RM. 3D printing for the many, not the few. Nat Biotechnol. 2014;32(11):1086-7. http://dx.doi.org/10.1038/nbt.3056. PMid:25380438.

Gargus ES, Rogers HB, McKinnon KE, Edmonds ME, Woodruff TK. Engineered reproductive tissues. Nat Biomed Eng. 2020;4(4):381-93. http://dx.doi.org/10.1038/s41551-020-0525-x. PMid:32251392.

Guo Y, Yang Y, Yi X, Zhou X. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes. Cryobiology. 2019;90:63-70. http://dx.doi.org/10.1016/j.cryobiol.2019.08.005. PMid:31449779.

Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, Mitchelson K, Wang J, Huang G, Qiao J, Cheng J. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip. 2010;10(21):2848-54. http://dx.doi.org/10.1039/c005296e. PMid:20844784.

Heo YS, Cabrera LM, Bormann CL, Smith GD, Takayama S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip. 2012;12(12):2240-6. http://dx.doi.org/10.1039/c2lc21050a. PMid:22402469.

Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, Toner M. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip. 2011;11(20):3530-7. http://dx.doi.org/10.1039/c1lc20377k. PMid:21887438.

Hoffman RM. 3D sponge-matrix histoculture: methods and protocols. New York: Springer; 2018. In memoriam: Joseph Leighton, 1921–1999—father of 3-dimensional tissue culture; p. 1-9. Methods in Molecular Biology, vol. 1760. https://doi.org/10.1007/978-1-4939-7745-1_1.

Huang HY, Lai YL, Yao DJ. Dielectrophoretic microfluidic device for in vitro fertilization. Micromachines. 2018;9(3):135. http://dx.doi.org/10.3390/mi9030135. PMid:30424069.

Huang HY, Shen HH, Tien CH, Li CJ, Fan SK, Liu CH, Hsu WS, Yao DJ. Digital microfluidic dynamic culture of mammalian embryos on an Electrowetting on Dielectric (EWOD) chip. PLoS One. 2015;10(5):e0124196. http://dx.doi.org/10.1371/journal.pone.0124196. PMid:25933003.

Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21(12):745-54. http://dx.doi.org/10.1016/j.tcb.2011.09.005. PMid:22033488.

Jalayeri M, Pirnia A, Najafabad EP, Varzi AM, Gholami M. Evaluation of alginate hydrogel cytotoxicity on three-dimensional culture of type A spermatogonial stem cells. Int J Biol Macromol. 2017;95:888-94. http://dx.doi.org/10.1016/j.ijbiomac.2016.10.074. PMid:27984148.

Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. http://dx.doi.org/10.3389/fmolb.2020.00033. PMid:32211418.

Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, Reimer YSO, Castel G, Bruneau A, Maenhoudt N, Lammers J, Loubersac S, Freour T, Vankelecom H, David L, Rivron N. Human blastoids model blastocyst development and implantation. Nature. 2022;601(7894):600-5. http://dx.doi.org/10.1038/s41586-021-04267-8. PMid:34856602.

Kamperman T, Karperien M, Le Gac S, Leijten J. Single-cell microgels: technology, challenges, and applications. Trends Biotechnol. 2018;36(8):850-65. http://dx.doi.org/10.1016/j.tibtech.2018.03.001. PMid:29656795.

Karcz A, Van Soom A, Smits K, Van Vlierberghe S, Verplancke R, Pascottini OB, Van den Abbeel E, Vanfleteren J. Development of a microfluidic chip powered by EWOD for in vitro manipulation of bovine embryos. Biosensors. 2023;13(4):419. http://dx.doi.org/10.3390/bios13040419. PMid:37185494.

Khalili A, Rezai P. Microfluidic devices for embryonic and larval zebrafish studies. Brief Funct Genomics. 2019;18(6):419-32. http://dx.doi.org/10.1093/bfgp/elz006. PMid:31034029.

Kieslinger DC, Hao Z, Vergouw CG, Kostelijk EH, Lambalk CB, Le Gac SS. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial. Fertil Steril. 2015;103(3):680-6.e2. http://dx.doi.org/10.1016/j.fertnstert.2014.12.089. PMid:25572874.

Kim MS, Bae CY, Wee G, Han YM, Park JK. A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis. 2009;30(18):3276-82. http://dx.doi.org/10.1002/elps.200900157. PMid:19705355.

Ko Y-J, Maeng J-H, Hwang SY, Ahn Y. Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol. 2018;23(6):507-15. http://dx.doi.org/10.1177/2472630318783948. PMid:29949396.

Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, Maltepe E, Rinaudo P. Effect of substrate stiffness on early mouse embryo development. PLoS One. 2012;7(7):e41717. http://dx.doi.org/10.1371/journal.pone.0041717. PMid:22860009.

Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, Hayashi K, Katagiri K, Yamanaka H, Sanjo H, Yao M, Kamimura S, Inoue K, Ogonuki N, Ogura A, Fujii T, Ogawa T. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep. 2016;6(1):21472. http://dx.doi.org/10.1038/srep21472. PMid:26892171.

Lai D, Ding J, Smith GW, Smith GD, Takayama S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum Reprod. 2015;30(1):37-45. http://dx.doi.org/10.1093/humrep/deu284. PMid:25355589.

Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun. 2017;8(1):15261. http://dx.doi.org/10.1038/ncomms15261. PMid:28509899.

Laughlin TD, Miles JR, Wright-Johnson EC, Rempel LA, Lents CA, Pannier AK. Development of pre-implantation porcine blastocysts cultured within alginate hydrogel systems either supplemented with secreted phosphoprotein 1 or conjugated with Arg-Gly-Asp peptide. Reprod Fertil Dev. 2017;29(12):2345-56. http://dx.doi.org/10.1071/RD16366. PMid:28448789.

Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-26. http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003. PMid:22125349.

Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385-91. http://dx.doi.org/10.1016/S1472-6483(10)60222-2. PMid:18765009.

Lopez-Garcia MDC, Beebe DJ, Crone WC. Young’s modulus of collagen at slow displacement rates. Biomed Mater Eng. 2010;20(6):361-9. http://dx.doi.org/10.3233/BME-2010-0649. PMid:21263182.

Ma R, Xie L, Han C, Su K, Qiu T, Wang L, Huang G, Xing W, Qiao J, Wang J, Cheng J. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem. 2011;83(8):2964-70. http://dx.doi.org/10.1021/ac103063g. PMid:21438638.

MacKintosh SB, Serino LP, Iddon PD, Brown R, Conlan RS, Wright CJ, Maffeis TGG, Raxworthy MJ, Sheldon IM. A three-dimensional model of primary bovine endometrium using an electrospun scaffold. Biofabrication. 2015;7(2):025010. http://dx.doi.org/10.1088/1758-5090/7/2/025010. PMid:26019144.

Menezo Y, Dale B, Elder K. Time to re-evaluate ART protocols in the light of advances in knowledge about methylation and epigenetics: an opinion paper. Hum Fertil. 2018;21(3):156-62. http://dx.doi.org/10.1080/14647273.2017.1317846. PMid:28438071.

Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. http://dx.doi.org/10.1038/nbt.2958. PMid:25093879.

Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, Yamanouchi T, Matsuda H, Goto Y, Sakatani M, Hojo T, Nishizono H, Yotsushima K, Takenouchi N, Hashiyada Y, Yamashita K. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA. 2018;115(14):E3087-96. http://dx.doi.org/10.1073/pnas.1717974115. PMid:29555773.

Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21(6):1968-94. http://dx.doi.org/10.1021/acs.biomac.0c00045. PMid:32227919.

Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Young R, Kanter J, Gordon S, Yi AY, Mainigi M, Huh DD. A microphysiological model of human trophoblast invasion during implantation. Nat Commun. 2022;13(1):1252. http://dx.doi.org/10.1038/s41467-022-28663-4. PMid:35292627.

Parrella A, Choi D, Keating D, Rosenwaks Z, Palermo GD. A microfluidic device for selecting the most progressively motile spermatozoa yields a higher rate of euploid embryos. Fertil Steril. 2018;110(4):e342. http://dx.doi.org/10.1016/j.fertnstert.2018.07.955.

Pollard JW, Plante C, King W, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991;44(1):102-7. http://dx.doi.org/10.1095/biolreprod44.1.102. PMid:2015341.

Pyne DG, Liu J, Abdelgawad M, Sun Y. Digital microfluidic processing of mammalian embryos for vitrification. PLoS One. 2014;9(9):e108128. http://dx.doi.org/10.1371/journal.pone.0108128. PMid:25250666.

Robertson SA. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 2005;322(1):43-52. http://dx.doi.org/10.1007/s00441-005-1127-3. PMid:15909166.

Robinson M, Bedford E, Witherspoon L, Willerth SM, Flannigan R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F S Sci. 2022;3(2):130-9. http://dx.doi.org/10.1016/j.xfss.2022.02.004. PMid:35560010.

Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181-9. http://dx.doi.org/10.1038/nature13118. PMid:24622198.

Sargus-Patino CN, Wright EC, Plautz SA, Miles JR, Vallet JL, Pannier AK. In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix. Reprod Fertil Dev. 2014;26(7):943-53. http://dx.doi.org/10.1071/RD13008. PMid:23916395.

Scherr T, Knapp GL, Guitreau A, Park DS-W, Tiersch T, Nandakumar K, Monroe WT. Microfluidics and numerical simulation as methods for standardization of zebrafish sperm cell activation. Biomed Microdevices. 2015;17(3):65. http://dx.doi.org/10.1007/s10544-015-9957-6. PMid:26026298.

Son J, Samuel R, Gale BK, Carrell DT, Hotaling JM. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics. 2017;11(5):054106. http://dx.doi.org/10.1063/1.4994548. PMid:29034050.

Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77(3):977-1026. http://dx.doi.org/10.1103/RevModPhys.77.977.

Stern-Tal D, Achache H, Catane LJ, Reich R, Re’em TT. Novel 3D embryo implantation model within macroporous alginate scaffolds. J Biol Eng. 2020;14(1):18. http://dx.doi.org/10.1186/s13036-020-00240-7. PMid:32617119.

Suarez SS. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016;363(1):185-94. http://dx.doi.org/10.1007/s00441-015-2244-2. PMid:26183721.

Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006;21(2):477-83. http://dx.doi.org/10.1093/humrep/dei323. PMid:16199424.

Vanacker J, Luyckx V, Dolmans M-M, Des Rieux A, Jaeger J, Van Langendonckt A, Donnez J, Amorim CA. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33(26):6079-85. http://dx.doi.org/10.1016/j.biomaterials.2012.05.015. PMid:22658800.

Wagenaar B, Berendsen JTW, Bomer JG, Olthuis W, van den Berg A, Segerink LI. Microfluidic single sperm entrapment and analysis. Lab Chip. 2015;15(5):1294-301. http://dx.doi.org/10.1039/C4LC01425A. PMid:25578490.

Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2-22. http://dx.doi.org/10.1093/humupd/dmv034. PMid:26207016.

Walsh SC, Miles JR, Broeckling CD, Rempel LA, Wright-Johnson EC, Pannier AK. Secreted metabolome of porcine blastocysts encapsulated within in vitro 3D alginate hydrogel culture systems undergoing morphological changes provides insights into specific mechanisms involved in the initiation of porcine conceptus elongation. Reprod Fertil Dev. 2023;35(5):375-94. http://dx.doi.org/10.1071/RD22210. PMid:36780705.

Wang H, Pilla F, Anderson S, Martínez-Escribano S, Herrer I, Moreno-Moya JM, Musti S, Bocca S, Oehninger S, Horcajadas JA. A novel model of human implantation: 3D endometrium-like culture system to study attachment of human trophoblast (Jar) cell spheroids. Mol Hum Reprod. 2012;18(1):33-43. http://dx.doi.org/10.1093/molehr/gar064. PMid:21989169.

Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368-73. http://dx.doi.org/10.1038/nature05058. PMid:16871203.

Xiang L, Yin Y, Zheng Y, Ma Y, Li Y, Zhao Z, Guo J, Ai Z, Niu Y, Duan K, He J, Ren S, Wu D, Bai Y, Shang Z, Dai X, Ji W, Li T. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature. 2020a;577(7791):537-42. http://dx.doi.org/10.1038/s41586-019-1875-y. PMid:31830756.

Xiang L, Yin Y, Zheng Y, Ma Y, Li Y, Zhao Z, Guo J, Ai Z, Niu Y, Duan K, He J, Ren S, Wu D, Bai Y, Shang Z, Dai X, Ji W, Li T. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature. 2020b;577(7791):537-42. http://dx.doi.org/10.1038/s41586-019-1875-y. PMid:31830756.

Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, Malpani SS, Arnold-Murray CA, Chen K, Jiang M, Bai L, Nguyen CT, Zhang J, Laronda MM, Hope TJ, Maniar KP, Pavone ME, Avram MJ, Sefton EC, Getsios S, Burdette JE, Kim JJ, Borenstein JT, Woodruff TK. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8(1):14584. http://dx.doi.org/10.1038/ncomms14584. PMid:28350383.

Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, Wang L, Huang G, Qiao J, Wang J, Cheng J. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):1270-8. http://dx.doi.org/10.1373/clinchem.2010.146902. PMid:20551382.

Yamanaka H, Komeya M, Nakamura H, Sanjo H, Sato T, Yao M, Kimura H, Fujii T, Ogawa T. A monolayer microfluidic device supporting mouse spermatogenesis with improved visibility. Biochem Biophys Res Commun. 2018;500(4):885-91. http://dx.doi.org/10.1016/j.bbrc.2018.04.180. PMid:29705697.

Yanez LZ, Camarillo DB. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod. 2017;23(4):235-47. http://dx.doi.org/10.1093/molehr/gaw071. PMid:27932552.

Yániz JL, Santolaria P, López-Gatius F. In vitro development of bovine embryos encapsulated in sodium alginate. J Vet Med A Physiol Pathol Clin Med. 2002;49(8):393-5. http://dx.doi.org/10.1046/j.1439-0442.2002.00463.x. PMid:12450185.

You Y, Stelzl P, Zhang Y, Porter J, Liu H, Liao A-H, Aldo PB, Mor G. Novel 3D in vitro models to evaluate trophoblast migration and invasion. Am J Reprod Immunol. 2019;81(3):e13076. http://dx.doi.org/10.1111/aji.13076. PMid:30582662.

Zeringue HC, Rutledge JJ, Beebe DJ. Early mammalian embryo development depends on cumulus removal technique. Lab Chip. 2005;5(1):86-90. http://dx.doi.org/10.1039/b316494m. PMid:15616744.

Zha D, Rayamajhi S, Sipes J, Russo A, Pathak HB, Li K, Sardiu ME, Bantis LE, Mitra A, Puri RV, Trinidad CV, Cain BP, Isenberg BC, Coppeta J, MacLaughlan S, Godwin AK, Burdette JE. Proteomic profiling of fallopian tube-derived extracellular vesicles using a microfluidic tissue-on-chip system. Bioengineering. 2023;10(4):423. http://dx.doi.org/10.3390/bioengineering10040423. PMid:37106610.

Zhao S, Liu Z-X, Gao H, Wu Y, Fang Y, Wu S-S, Li M-J, Bai J-H, Liu Y, Evans A, Zeng S-M. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro. Theriogenology. 2015;84(2):184-92. http://dx.doi.org/10.1016/j.theriogenology.2015.03.011. PMid:25881989.
 


Submitted date:
04/26/2022

Accepted date:
06/29/2023

64cbace7a953957c7443b0d5 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections