Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0060
Animal Reproduction (AR)
Thematic Section: 39th Annual Meeting of the Association of Embryo Technology in Europe (AETE)

Applying assisted reproductive technology and reproductive management to reduce CO2-equivalent emission in dairy and beef cattle: a review

Pietro Sampaio Baruselli; Laís Ângelo de Abreu; Vanessa Romário de Paula; Bruno Carvalho; Emanuelle Almeida Gricio; Fernando Kenji Mori; Lígia Mattos Rebeis; Sofía Albertini; Alexandre Henrily de Souza; Michael D’Occhio

Downloads: 1
Views: 510

Abstract

Abstract: Methane emission from beef and dairy cattle combined contributes around 4.5-5.0% of total anthropogenic global methane. In addition to enteric methane (CH4) produced by the rumen, cattle production also contributes carbon dioxide (CO2) (feed), nitrous oxide (N2O) (feed production, manure) and other CH4 (manure) to the total greenhouse gas (GHG) budget of beef and dairy production systems. The relative contribution in standard dairy systems is typically enteric CH4 58%, feed 29% and manure 10%. Herds with low production efficiency can have an enteric CH4 contribution up to 90%. Digestibility of feed can impact CH4 emission intensity. Low fertility herds also have a greater enteric CH4 contribution. Animals with good feed conversion efficiency have a lower emission intensity of CH4/kg of meat or milk. Feed efficient heifers tend to be lean and have delayed puberty. Fertility is a major driver of profit in both beef and dairy cattle, and it is highly important to apply multi-trait selection when shifting herds towards improved efficiency and reduced CH4. Single nucleotide polymorphisms (SNPs) have been identified for feed efficiency in cattle and are used in genomic selection. SNPs can be utilized in artificial insemination and embryo transfer to increase the proportion of cattle that have the attributes of efficiency, fertility and reduced enteric CH4. Prepubertal heifers genomically selected for favourable traits can have oocytes recovered to produce IVF embryos. Reproductive technology is predicted to be increasingly adopted to reduce generation interval and accelerate the rate of genetic gain for efficiency, fertility and low CH4 in cattle. The relatively high contribution of cattle to anthropogenic global methane has focussed attention on strategies to reduce enteric CH4 without compromising efficiency and fertility. Assisted reproductive technology has an important role in achieving the goal of multiplying and distributing cattle that have good efficiency, fertility and low CH4.

Keywords

cattle, enteric methane, efficiency, fertility, assisted reproductive technology

References

Abo-Ismail MK, Kelly MJ, Squires EJ, Swanson KC, Bauck S, Miller SP. Identification of single nucleotide polymorphisms in genes involved in digestive and metabolic processes associated with feed efficiency and performance traits in beef cattle. J Anim Sci. 2013;91(6):2512-29. http://dx.doi.org/10.2527/jas.2012-5756. PMid:23508024.

Abreu LA, Paula VR, Carvalho BC, Souza AH, Rebeis LM, Mori FK, Gricio E, Baruselli PS. Influence of calving interval on the carbon footprint of lactating dairy cows under the life cycle assessment metric. Animal Science Proceedings. 2023;14(3):529-30. http://dx.doi.org/10.1016/j.anscip.2023.03.159.

Abreu LA, Rezende VT, Gameiro AH, Baruselli PS. Effect of reduced age at first calving and an increased weaning rate on CO2 equivalent emissions in a cow-calf system. Revista Engenharia na Agricultura. 2022;30:311-8. http://dx.doi.org/10.13083/reveng.v30i1.14028.

12-03 Alexandratos N, Bruinsma J. World Agriculture Towards 2030/2050: The 2012 Revision. Rome: FAO; 2012. (ESA Working Paper No12-03

Arthur PF, Herd RM. Efficiency of feed utilisation by livestock - Implications and benefits of genetic improvement. Can J Anim Sci. 2005;85(3):281-90. http://dx.doi.org/10.4141/A04-062.

Arthur PF. Genetic technologies to reduce methane emissions from Australian beef cattle: research Project, Final Report. 2015 [cited 2023 May 16]. Available from: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/584178/genetic-technologies-to-reduce-methane-emissions-from-australian-beef-cattle.pdf.

Awda BJ, Miller SP, Montanholi YR, Vander Voort G, Caldwell T, Buhr MM, Swanson KC. The relationship between feed efficiency traits and fertility in young beef bulls. Can J Anim Sci. 2013;93(2):185-92. http://dx.doi.org/10.4141/cjas2012-092.

Baldassarre H, Bordignon V. Laparoscopic ovum pick-up for in vitro embryo production from dairy bovine and buffalo calves. Anim Reprod. 2018;15(3):191-6. http://dx.doi.org/10.21451/1984-3143-AR2018-0057. PMid:34178141.

Baruselli PS, Batista EOS, Vieira LM, Ferreira RM, Guerreiro BG, Bayeux BM, Sales JNS, Souza AH, Gimenes LU. Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim Reprod. 2016;13(3):264-72. http://dx.doi.org/10.21451/1984-3143-AR861.

Baruselli PS, Ferreira RM, Colli MHA, Elliff FM, Sá MF Fo, Vieira LM, Freitas BG. Timed artificial insemination: current challenges and recent advances in reproductive efficiency in beef and dairy herds in Brazil. Anim Reprod. 2017;14(3):558-71. http://dx.doi.org/10.21451/1984-3143-AR999.

Baruselli PS, Ferreira RM, Vieira LM, Souza AH, Bó GA, Rodrigues CA. Use of embryo transfer to alleviate infertility caused by heat stress. Theriogenology. 2020;155:1-11. http://dx.doi.org/10.1016/j.theriogenology.2020.04.028. PMid:32562738.

Baruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025. PMid:15271474.

Baruselli PS, Rodrigues CA, Ferreira RM, Sales JNS, Elliff FM, Silva LG, Viziack MP, Factor L, D’Occhio MJ. Impact of oocyte donor age and breed on in vitro embryo production in cattle, and relationship of dairy and beef embryo recipients on pregnancy and the subsequent performance of offspring: A review. Reprod Fertil Dev. 2021;34(2):36-51. http://dx.doi.org/10.1071/RD21285. PMid:35231233.

Baruselli PS, Ferreira RM, Sá MF Fo, Bó GA. Review: using artificial insemination vs. natural service in beef herds. Animal. 2018a;12(S1):s45-52. http://dx.doi.org/10.1017/S175173111800054X. PMid:29554986.

Baruselli PS, Souza AH, Sá MF Fo, Marques MO, Sales JNS. Genetic market in cattle (Bull, AI, FTAI, MOET and IVP): financial payback based on reproductive efficiency in beef and dairy herds in Brazil. Anim Reprod. 2018b;15(3):247-55. http://dx.doi.org/10.21451/1984-3143-AR2018-0091. PMid:34178148.

Basarab JA, Beauchemin KA, Baron VS, Ominski KH, Guan LL, Miller SP, Crowley JJ. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Animal. 2013;7(Suppl 2):303-15. http://dx.doi.org/10.1017/S1751731113000888. PMid:23739472.

Berry DP, Crowley JJ. Cell Biology Symposium: genetics of feed efficiency in dairy and beef cattle. J Anim Sci. 2013;91(4):1594-613. http://dx.doi.org/10.2527/jas.2012-5862. PMid:23345557.

Betteridge KJ, Smith C, Stubbings RB, Xu KP, King WA. Potential genetic improvement of cattle by fertilization of fetal oocytes in vitro. J Reprod Fertil Suppl. 1989;38:87-98. PMid:2677352.

Biassus IO, Cobuci JA, Costa CN, Rorato PRN, Braccini Neto J, Cardoso LL. Persistence in milk, fat and protein production of primiparous Holstein cows by random regression models. Rev Bras Zootec. 2010;39(12):2617-24. http://dx.doi.org/10.1590/S1516-35982010001200009.

Bó GA, Huguenine E, de la Mata JJ, Núñez-Olivera R, Baruselli PS, Menchaca A. Programs for fixed-time artificial insemination in South American beef cattle. Anim Reprod. 2018;15(Suppl 1):952-62. http://dx.doi.org/10.21451/1984-3143-AR2018-0025. PMid:36249833.

Bonamy M, Kluska S, Peripolli E, Lemos MVA, Amorim ST, Vaca RJ, Lôbo RB, Castro LM, Faria CU, Ferrari FB, Baldi F. Genetic association between different criteria to define sexual precocious heifers with growth, carcass, reproductive and feed efficiency indicator traits in Nellore cattle using genomic information. J Anim Breed Genet. 2019;136(1):15-22. http://dx.doi.org/10.1111/jbg.12366. PMid:30461083.

Bourgon SL, Diel de Amorim M, Chenier T, Sargolzaei M, Miller SP, Martell JE, Montanholi YR. Relationships of nutritional plane and feed efficiency with sexual development and fertility related measures in young beef bulls. Anim Reprod Sci. 2018;198:99-111. http://dx.doi.org/10.1016/j.anireprosci.2018.09.007. PMid:30219379.

Bowen JM, Cormican P, Lister SJ, McCabe MS, Duthie CA, Roehe R, Dewhurst RJ. Links between the rumen microbiota, methane emissions and feed efficiency of finishing steers offered dietary lipid and nitrate supplementation. PLoS One. 2020;15(4):e0231759. http://dx.doi.org/10.1371/journal.pone.0231759. PMid:32330150.

Buss CE, Afonso J, de Oliveira PSN, Petrini J, Tizioto PC, Cesar ASM, Gustani-Buss EC, Cardoso TF, Rovadoski GA, da Silva Diniz WJ, de Lima AO, Rocha MIP, Andrade BGN, Wolf JB, Coutinho LL, Mourão GB, de Almeida Regitano LC. Bivariate GWAS reveals pleiotropic regions among feed efficiency and beef quality-related traits in Nelore cattle. Mamm Genome. 2023;34(1):90-103. http://dx.doi.org/10.1007/s00335-022-09969-6. PMid:36463529.

Callegaro S, Niero G, Penasa M, Finocchiaro R, Invernizzi G, Cassandro M. Greenhouse gas emissions, dry matter intake and feed efficiency of young Holstein bulls. Ital J Anim Sci. 2022;21(1):870-7. http://dx.doi.org/10.1080/1828051X.2022.2071178.

Canal LB, Fontes PLP, Sanford CD, Mercadante VRG, DiLorenzo N, Lamb GC, Oosthuizen N. Relationships between feed efficiency and puberty in Bos taurus and Bos indicus-influenced replacement beef heifers. J Anim Sci. 2020;98(10):1-9. http://dx.doi.org/10.1093/jas/skaa319. PMid:32978943.

Chhabra A, Manjunath KR, Panigrahy S, Parihar JS. Greenhouse gas emissions from Indian livestock. Clim Change. 2013;117(1-2):329-44. http://dx.doi.org/10.1007/s10584-012-0556-8.

Cole JB, Null DJ. Genetic evaluation of lactation persistency for five breeds of dairy cattle. J Dairy Sci. 2009;92(5):2248-58. http://dx.doi.org/10.3168/jds.2008-1825. PMid:19389984.

Congio GFS, Bannink A, Mayorga OL, Rodrigues JPP, Bougouin A, Kebreab E, Silva RR, Mauricio RM, da Silva SC, Oliveira PPA, Munoz C, Pereira LGR, Gomez C, Ariza-Nieto C, Ribeiro-Filho HMN, Castelan-Ortega OA, Rosero-Noguera JR, Tieri MP, Rodrigues PHM, Marcondes MI, Astigarraga L, Abarca S, Hristov AN. Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database. Sci Total Environ. 2022;825:153982. http://dx.doi.org/10.1016/j.scitotenv.2022.153982. PMid:35202679.

Crowley JJ, Evans RD, McHugh N, Kenny DA, McGee M, Crews DH Jr, Berry DP. Genetic relationships between feed efficiency in growing males and beef cow performance. J Anim Sci. 2011;89(11):3372-81. http://dx.doi.org/10.2527/jas.2011-3835. PMid:21680792.

Davis ME, Lancaster PA, Rutledge JJ, Cundiff LV. Life cycle efficiency of beef production: VIII. Relationship between residual feed intake of heifers and subsequent cow efficiency ratios. J Anim Sci. 2016;94(11):4860-71. http://dx.doi.org/10.2527/jas.2016-0690. PMid:27898944.

Davis TC, White RR. Breeding animals to feed people: the many roles of animal reproduction in ensuring global food security. Theriogenology. 2020;150:27-33. http://dx.doi.org/10.1016/j.theriogenology.2020.01.041. PMid:32088028.

de Haas Y, Veerkamp RF, de Jong G, Aldridge MN. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal. 2021;15(Suppl 1):100294. http://dx.doi.org/10.1016/j.animal.2021.100294. PMid:34246599.

Difford GF, Plichta DR, Løvendahl P, Lassen J, Noel SJ, Højberg O, Wright ADG, Zhu Z, Kristensen L, Nielsen HB, Guldbrandtsen B, Sahana G. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018;14(10):e1007580. http://dx.doi.org/10.1371/journal.pgen.1007580. PMid:30312316.

Eugéne M, Klumpp K, Sauvant D. Methane mitigating options with forage fed ruminants. Grass Forage Sci. 2021;76(2):196-204. http://dx.doi.org/10.1111/gfs.12540.

Evans ACO, Adams GP, Rawling NC. Follicular and hormonal development in prepubertal heifers from 2 to 36 weeks of age. J Reprod Fertil. 1994a;102(2):463-70. http://dx.doi.org/10.1530/jrf.0.1020463. PMid:7861402.

Evans ACO, Adams GP, Rawlings NC. Endocrine and ovarian follicular changes leading up to the first ovulation in prepubertal heifers. J Reprod Fertil. 1994b;100(1):187-94. http://dx.doi.org/10.1530/jrf.0.1000187. PMid:8182588.

FAO. Climate Smart Agriculture Sourcebook, 2018 [cited 2023 May 16]. Available from: www.fao.org/climate-smart-agriculture-sourcebook/about/new-content/en/.

FAO. Livestock and enteric methane. 2019 [cited 2023 May 16]. Available from: www.fao.org/in-action/enteric-methane/en/.

Faverdin P, Guyomard H, Puillet L, Forslund A. Animal board invited review: Specialising and intensifying cattle production for better efficiency and less global warming: contrasting results for milk and meat co-production at different scales. Animal. 2022;16(1):100431. http://dx.doi.org/10.1016/j.animal.2021.100431. PMid:34996025.

Ferraz JBS, Eler JP, Rezende FM. Impact of using artificial insemination on the multiplication of high genetic merit beef cattle in Brazil. Anim Reprod. 2012;9(3):133-8.

Ferreira RJ Jr, Bonilha SFM, Monteiro FM, Cyrillo JNSG, Branco RH, Silva JAV, Mercadante MEZ. Evidence of negative relationship between female fertility and feed efficiency in Nellore cattle. J Anim Sci. 2018;96(10):4035-44. http://dx.doi.org/10.1093/jas/sky276. PMid:29986041.

Figueiredo EB, Jayasundara S, Bordonal RO, Berchielli TT, Reis RA, Wagner-Riddle C, La Scala N Jr. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J Clean Prod. 2017;142(1):420-31. http://dx.doi.org/10.1016/j.jclepro.2016.03.132.

Fontoura ABP, Montanholi YR, Diel De Amorim M, Foster RA, Chenier T, Miller SP. Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls. Animal. 2016;10(1):96-105. http://dx.doi.org/10.1017/S1751731115001925. PMid:26351012.

Freetly HC, Brown-Brandl TM. Enteric methane production from beef cattle that vary in feed efficiency. J Anim Sci. 2013;91(10):4826-31. http://dx.doi.org/10.2527/jas.2011-4781. PMid:23965389.

Galyean ML, Hales KE. Feeding management strategies to mitigate methane and improve production efficiency in feedlot cattle. Animals (Basel). 2023;13(4):758. http://dx.doi.org/10.3390/ani13040758. PMid:36830545.

Garnworthy PC. The environmental impact of fertility in dairy cows: a modelling approach to predict methane and ammonia emissions. Anim Feed Sci Technol. 2004;112(1-4):211-23. http://dx.doi.org/10.1016/j.anifeedsci.2003.10.011.

Georges M, Massey JM. Velogenetics, or the synergistic use of marker assisted selection and germ-line manipulation. Theriogenology. 1991;35(1):151-9. http://dx.doi.org/10.1016/0093-691X(91)90154-6.

Gonzalez-Recio O, Pryce JE, Haile-Mariam M, Hayes BJ. Incorporating heifer feed efficiency in the Australian selection index using genomic selection. J Dairy Sci. 2014;97(6):3883-93. http://dx.doi.org/10.3168/jds.2013-7515. PMid:24679937.

Gonzalez-Recio O, Scrobota N, López-Paredes J, Saborío-Montero A, Fernández A, López de Maturana E, Villanueva B, Goiri I, Atxaerandio R, García-Rodríguez A. Review: diving into the cow hologenome to reduce methane emissions and increase sustainability. Animal. 2023;17(2):100780. http://dx.doi.org/10.1016/j.animal.2023.100780.

Hansen PJ. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology. 2007;68(Suppl 1):S242-9. http://dx.doi.org/10.1016/j.theriogenology.2007.04.008. PMid:17482669.

Hayes BJ, Donoghue KA, Reich CM, Mason BA, Bird-Gardiner T, Herd RM, Arthur PF. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle. J Anim Sci. 2016;94(3):902-8. http://dx.doi.org/10.2527/jas.2015-0078. PMid:27065252.

Hegarty RS, McEwan JC. Genetic opportunities to reduce enteric methane emissions from ruminant livestock. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production; Leipzig, Germany. Local: Publisher German Society for Animal Science; 2010. p. 515.

Hietala P, Juga J. Impact of including growth, carcass and feed efficiency traits in the breeding goal for combined milk and beef production systems. Animal. 2017;11(4):564-73. http://dx.doi.org/10.1017/S1751731116001877. PMid:27608523.

Hossein-Zadeh NG. Estimates of the genetic contribution to methane emission in dairy cows: a meta-analysis. Sci Rep. 2022;12(1):12352. http://dx.doi.org/10.1038/s41598-022-16778-z. PMid:35853993.

Hutchinson IA, Shalloo L, Butler ST. Expanding the dairy herd in pasture-based systems: the role of sexed semen use in virgin heifers and lactating cows. J Dairy Sci. 2013;96(10):6742-52. http://dx.doi.org/10.3168/jds.2012-6476. PMid:23958011.

Ibidhi R, Calsamiglia S. Carbon footprint assessment of Spanish dairy cattle farms: effectiveness of dietary and farm management practices as a mitigation strategy. Animals (Basel). 2020;10(11):2083. http://dx.doi.org/10.3390/ani10112083. PMid:33182611.

ISO. ISO 14040:2006(E): environmental management - life cycle assessment - principles and framework. Geneva: ISO; 2006a.

ISO. ISO 14044:2006(E): environmental management - life cycle assessment - requirements and guidelines. Geneva: ISO; 2006b.

Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73(8):2483-92. http://dx.doi.org/10.2527/1995.7382483x. PMid:8567486.

Kadzere CT, Murphy MR, Silanikove N, Maltz E. Heat stress in lactating dairy cows: a review. Livest Prod Sci. 2002;77(1):59-91. http://dx.doi.org/10.1016/S0301-6226(01)00330-X.

Kasinathan P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF. Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep. 2015;5(1):8674. http://dx.doi.org/10.1038/srep08674. PMid:25728468.

Kauffold J, Amer HAH, Bergfeld U, Müller F, Weber W, Sobiraj A. Offspring from non-stimulated calves at an age younger than two months: a preliminary report. J Reprod Dev. 2005;51(4):527-32. http://dx.doi.org/10.1262/jrd.17015. PMid:15976483.

Kava R, Peripolli E, Brunes LC, Espigolan R, Mendes EDM, da Silva Neto JB, Londoño-Gil M, Sainz RD, Lobo RB, Baldi F. Estimates of genetic and phenotypic parameters for feeding behaviour and feed efficiency-related traits in Nelore cattle. J Anim Breed Genet. 2023;140(3):264-75. http://dx.doi.org/10.1111/jbg.12756. PMid:36633154.

Kenny DA, Fitzsimons C, Waters SM, McGee M. Invited review: improving feed efficiency of beef cattle - the current state of the art and future challenges. Animal. 2018;12(9):1815-26. http://dx.doi.org/10.1017/S1751731118000976. PMid:29779496.

Knapp B Jr, Nordskog AW. Heritability of growth and efficiency in beef cattle. J Anim Sci. 1946;5(1):62-70. http://dx.doi.org/10.2527/jas1946.5162. PMid:21015595.

Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci. 2014;97(6):3231-61. http://dx.doi.org/10.3168/jds.2013-7234. PMid:24746124.

Kowalski LH, Fernandes SR, DiLorenzo N, Moletta JL, Rossi P, de Freitas JA. Residual feed intake and reproductive traits of growing Purunã bulls. J Anim Sci. 2017;95(2):930-8. http://dx.doi.org/10.2527/jas.2016.0888. PMid:28380596.

Kyttä V, Roitto M, Astaptsev A, Saarinen M, Tuomisto HL. Review and expert survey of allocation methods used in life cycle assessment of milk and beef. Int J Life Cycle Assess. 2022;27(2):191-204. http://dx.doi.org/10.1007/s11367-021-02019-4.

Løvendahl P, Difford GF, Li B, Chagunda MGG, Huhtanen P, Lidauer MH, Lassen J, Lund P. Review: selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal. 2018;12(S2):s336-49. http://dx.doi.org/10.1017/S1751731118002276. PMid:30255826.

Madilindi MA, Zishiri OT, Dube B, Banga CB. Technological advances in genetic improvement of feed efficiency in dairy cattle: A review. Livest Sci. 2022;258:104871. http://dx.doi.org/10.1016/j.livsci.2022.104871.

Manzano P, Rowntree J, Thompson L, del Prado A, Ederer P, Windisch W, Lee MRF. Challenges for the balanced attribution of livestock’s environmental impacts: the art of conveying simple messages around complex realities. Anim Front. 2023;13(2):35-44. http://dx.doi.org/10.1093/af/vfac096.

Mapletoft RJ, Bó GA, Baruselli PS, Menchaca A, Sartori R. Evolution of knowledge on ovarian physiology and its contribution to the widespread application of reproductive biotechnologies in South American cattle. Anim Reprod. 2018;15(Suppl 1):1003-14. http://dx.doi.org/10.21451/1984-3143-AR2018-0007. PMid:36249848.

Montanholi YR, Fontoura ABP, Diel de Amorim M, Foster RA, Chenier T, Miller SP. Seminal plasma protein concentrations vary with feed efficiency and fertility-related measures in young beef bulls. Reprod Biol. 2016;16(2):147-56. http://dx.doi.org/10.1016/j.repbio.2016.04.002. PMid:27288339.

Monteiro CMR, Biagi MB, Perri SHV, Carvalho RGD, Nogueira GDP. Desenvolvimento folicular em ovários de fetos zebuínos (Bos taurus indicus). Biotemas. 2009;22(3):185-91. http://dx.doi.org/10.5007/2175-7925.2009v22n3p185.

Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Secur. 2017;14:1-8. http://dx.doi.org/10.1016/j.gfs.2017.01.001.

Mottet A, Teillard F, Boettcher P, Besi G, De Besbes B. Review: domestic herbivores and food security: current contribution, trends and challenges for a sustainable development. Animal. 2018;12(S2):s188-98. http://dx.doi.org/10.1017/S1751731118002215. PMid:30215340.

Mu Y, Vander Voort GV, Abo-Ismail MK, Ventura R, Jamrozik J, Miller SP. Genetic correlations between female fertility and postweaning growth and feed efficiency traits in multibreed beef cattle. Can J Anim Sci. 2016;96(3):448-55. http://dx.doi.org/10.1139/cjas-2015-0175.

Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci. 2006;84(1):145-53. http://dx.doi.org/10.2527/2006.841145x. PMid:16361501.

O’Brien D, Shalloo L, Grainger C, Buckley F, Horan B, Wallace M. The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms. J Dairy Sci. 2010;93(7):3390-402. http://dx.doi.org/10.3168/jds.2009-2790. PMid:20630255.

O’Hara E, Neves ALA, Song Y, Guan LL. The role of the gut microbiome in cattle production and health: drivers or passengers? Annu Rev Anim Biosci. 2020;8:199-220. http://dx.doi.org/10.1146/annurev-animal-021419-083952. PMid:32069435.

Onuma H, Hahn J, Foote RH. Factors affecting superovulation, fertilization and recovery of superovulated ova in prepubertal cattle. J Reprod Fertil. 1970;21(1):119-26. http://dx.doi.org/10.1530/jrf.0.0210119. PMid:5413346.

Pinares-Patiño CS, Waghorn GC, Machmüller A, Vlaming B, Molano G, Cavanagh A, Clark H. Methane emissions and digestive physiology of non-lactating dairy cows fed pasture forage. Can J Anim Sci. 2007;87(4):601-13. http://dx.doi.org/10.4141/CJAS06023.

Randel RD, Welsh TH Jr. Interactions of feed efficiency with beef heifer reproductive development. J Anim Sci. 2013;91(3):1323-8. http://dx.doi.org/10.2527/jas.2012-5679. PMid:23048157.

Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ, Crooker BA, Baumgard LH. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci. 2009;92(5):1986-97. http://dx.doi.org/10.3168/jds.2008-1641. PMid:19389956.

Roehe R, Dewhurst RJ, Duthie CA, Rooke JA, McKain N, Ross DW, Hyslop JJ, Waterhouse A, Freeman TC, Watson M, Wallace RJ. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet. 2016;12(2):e1005846. http://dx.doi.org/10.1371/journal.pgen.1005846. PMid:26891056.

Ross EM, Moate PJ, Marett L, Cocks BG, Hayes BJ. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J Dairy Sci. 2013;96(9):6030-46. http://dx.doi.org/10.3168/jds.2013-6766. PMid:23871375.

Sá MF Fo, Penteado L, Reis EL, Reis TANPS, Galvão KN, Baruselli PS. Timed artificial insemination early in the breeding season improves the reproductive performance of suckled beef cows. Theriogenology. 2013;79(4):625-32. http://dx.doi.org/10.1016/j.theriogenology.2012.11.016. PMid:23261306.

Sarghale AJ, Shahrebabak MM, Shahrebabak HM, Javaremi AN, Saatchi M, Khansefid M, Miar Y. Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data. BMC Genet. 2020;21(1):129. http://dx.doi.org/10.1186/s12863-020-00953-0. PMid:33228565.

Sartori R, Prata AB, Figueiredo ACS, Sanches BV, Pontes GCS, Viana JHM, Pontes JH, Vasconcelos JLM, Pereira MHC, Dode MAN, Monteiro PL Jr, Baruselli PS. Update and overview on assisted reproductive technologies (ARTs) in Brazil. Anim Reprod. 2016;13(3):300-12. http://dx.doi.org/10.21451/1984-3143-AR873.

Schefers JM, Weigel KA. Genomic selection in dairy cattle: integration of DNA testing into breeding programs. Anim Front. 2012;2(1):4-9. http://dx.doi.org/10.2527/af.2011-0032.

Seabury CM, Oldeschulte DL, Saatchi M, Beever JE, Decker JE, Halley YA, Bhattarai EK, Molaei M, Freetly HC, Hansen SL, Yampara-Iquise H, Johnson KA, Kerley MS, Kim JW, Loy DD, Marques E, Neibergs HL, Schnabel RD, Shike DW, Spangler ML, Weaber RL, Garrick DJ, Taylor JF. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics. 2017;18(1):386. http://dx.doi.org/10.1186/s12864-017-3754-y. PMid:28521758.

St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci. 2003;86(S1):E52-77. http://dx.doi.org/10.3168/jds.S0022-0302(03)74040-5.

Strandén I, Kantanen J, Lidauer MH, Mehtiö T, Negussie E. Animal board invited review: genomic-based improvement of cattle in response to climate change. Animal. 2022;16(12):100673. http://dx.doi.org/10.1016/j.animal.2022.100673. PMid:36402112.

Sypniewski M, Strabel T, Pszczola M. Genetic variability of methane production and concentration measured in the breath of Polish Holstein-Friesian cattle. Animals (Basel). 2021;11(11):3175. http://dx.doi.org/10.3390/ani11113175. PMid:34827907.

Terry SA, Basarab JA, Guan LL, McAllister TA. Strategies to improve the efficiency of beef cattle production. Can J Anim Sci. 2021;101(1):1-19. http://dx.doi.org/10.1139/cjas-2020-0022.

Thompson L, Rowntree J, Windisch W, Waters SM, Shalloo L, Manzano P. Ecosystem management using livestock: embracing diversity and respecting ecological principles. Anim Front. 2023;13(2):28-34. http://dx.doi.org/10.1093/af/vfac094. PMid:37073311.

Vallimont JE, Dechow CD, Daubert JM, Dekleva MW, Blum JW, Liu W, Varga GA, Heinrichs AJ, Baumrucker CR. Short communication: feed utilization and its associations with fertility and productive life in 11 commercial Pennsylvania tie-stall herds. J Dairy Sci. 2013;96(2):1251-4. http://dx.doi.org/10.3168/jds.2012-5712. PMid:23219114.

Vries M, van Middlaar CE, de Boer IJM. Comparing environmental impacts of beef production systems: a review of life cycle assessments. Livest Sci. 2015;178:279-88. http://dx.doi.org/10.1016/j.livsci.2015.06.020.

Wallace RJ, Rooke JA, McKain N, Duthie CA, Hyslop JJ, Ross DW, Waterhouse A, Watson M, Roehe R. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics. 2015;16(1):839. http://dx.doi.org/10.1186/s12864-015-2032-0. PMid:26494241.

Zetouni L, Kargo M, Norberg E, Lassen J. Genetic correlations between methane production and fertility, health, and body type traits in Danish Holstein cows. J Dairy Sci. 2018;101(3):2273-80. http://dx.doi.org/10.3168/jds.2017-13402. PMid:29331458.
 


Submitted date:
05/16/2023

Accepted date:
07/31/2023

64f22f85a953951d2b1412d3 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections