Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0063
Animal Reproduction (AR)
ORIGINAL ARTICLE

Is FSH combined with equine chorionic gonadotropin able to modify lipid metabolism in bovine superstimulated antral follicles?

Priscila Helena Santos; Fernanda Fagali Franchi; Sarah Gomes Nunes; Patricia Kubo Fontes; Alan Brunholi Giroto; Fernanda Mani; Anthony César de Souza Castilho

Downloads: 0
Views: 103

Abstract

Lipid metabolism is essential for ensuring oocyte maturation and embryo development. β-Oxidized fatty acids (FA) are a potent source of energy for cells, particularly for bovine somatic follicular cells. Superstimulatory protocols using follicle stimulating hormone (FSH) or FSH combined with equine chorionic gonadotropin (eCG) are capable of stimulating the follicular microenvironment and drive the expression of biomarker genes associated with lipid metabolism in the cumulus-oocyte complex (COC) for better embryo development. In this study, we assesed the effects of FSH and FSH/eCG protocols on the expression of genes related to lipid metabolism in bovine granulosa cells (GCs). Further, we measured triglyceride levels in follicular fluid (FF) obtained from both superstimulatd and non-superstimulated cows (synchronized cows). In summary, superstimulation with gonadotropins maintained the TG levels in bovine FF and ensured GCs mRNA abundance of ACSL1, ACSL3, ACSL6, SCD, ELOVL5, ELOVL6, FASN, FADS2, and SREBP1. We, however, found the abundance of CPTIB mRNA to be lower in GCs obtained from cows subjected to FSH/eCG protocols than synchronized cows. In conclusion, the findings of this study showed that ovarian superstimulation around the preovulatory phase has a mild impact on the lipid metabolism in GCs.

Keywords

triglycerides, follicle microenvironment, superovulation, gene expression, bovine

References

Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod. 2011;85(1):62-9. http://dx.doi.org/10.1095/biolreprod.110.088815. PMid:21311036.

Adams GP, Matteri RL, Kastelic JP, Ko JC, Ginther OJ. Association between surges of follicle-stimulating hormone and the emergence of follicular waves in heifers. J Reprod Fertil. 1992;94(1):177-88. http://dx.doi.org/10.1530/jrf.0.0940177. PMid:1552480.

Aller JF, Callejas SS, Alberio RH. Biochemical and steroid concentrations in follicular fluid and blood plasma in different follicular waves of the estrous cycle from normal and superovulated beef cows. Anim Reprod Sci. 2013;142(3-4):113-20. http://dx.doi.org/10.1016/j.anireprosci.2013.09.009. PMid:24139762.

Annes K, Muller DB, Vilela JAP, Valente RS, Caetano DP, Cibin FWS, Milazzotto MP, Mesquita FS, Belaz KRA, Eberlin MN, Sudano MJ. Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reprod Fertil Dev. 2019;31(3):462-72. http://dx.doi.org/10.1071/RD18109. PMid:30282571.

Bao B, Garverick HA. Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review. J Anim Sci. 1998;76(7):1903-21. http://dx.doi.org/10.2527/1998.7671903x. PMid:9690647.

Berg JM, Tymoczko JL, Stryer L. Biochemistry. New York: W.H. Freeman; 2002.

Bertevello PS, Teixeira-Gomes AP, Seyer A, Carvalho AV, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci. 2018;19(10):3261. http://dx.doi.org/10.3390/ijms19103261. PMid:30347829.

Buratini J Jr, Teixeira AB, Costa IB, Glapinski VF, Pinto MG, Giometti IC, Barros CM, Cao M, Nicola ES, Price CA. Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction. 2005;130(3):343-50. http://dx.doi.org/10.1530/rep.1.00642. PMid:16123241.

Carvalho CCCR, Caramujo MJ. The various roles of fatty acids. Molecules. 2018;23(10):2583. http://dx.doi.org/10.3390/molecules23102583. PMid:30304860.

Castilho AC, Nogueira MF, Fontes PK, Machado MF, Satrapa RA, Razza EM, Barros CM. Ovarian superstimulation using FSH combined with equine chorionic gonadotropin (eCG) upregulates mRNA-encoding proteins involved with LH receptor intracellular signaling in granulosa cells from Nelore cows. Theriogenology. 2014;82(9):1199-205. http://dx.doi.org/10.1016/j.theriogenology.2014.06.011. PMid:25219847.

Castilho ACS, Price CA, Dalanezi F, Ereno RL, Machado MF, Barros CM, Gasperin BG, Gonçalves PBD, Buratini J. Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle. Reprod Fertil Dev. 2017;29(2):234-43. http://dx.doi.org/10.1071/RD15017. PMid:26194863.

Collado-Fernandez E, Picton HM, Dumollard R. Metabolism throughout follicle and oocyte development in mammals. Int J Dev Biol. 2012;56(10-11-12):799-808. http://dx.doi.org/10.1387/ijdb.120140ec. PMid:23417402.

Cran DG. Qualitative and quantitative structural changes during pig oocyte maturation. J Reprod Fertil. 1985;74(1):237-45. http://dx.doi.org/10.1530/jrf.0.0740237. PMid:4020770.

Drummond AE. The role of steroids in follicular growth. Reprod Biol Endocrinol. 2006;4(1):16. http://dx.doi.org/10.1186/1477-7827-4-16. PMid:16603089.

Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83(6):909-18. http://dx.doi.org/10.1095/biolreprod.110.084145. PMid:20686180.

Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction. 2014;148(1):R15-27. http://dx.doi.org/10.1530/REP-13-0251. PMid:24760880.

Elis S, Desmarchais A, Maillard V, Uzbekova S, Monget P, Dupont J. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells. Theriogenology. 2015;83(5):840-53. http://dx.doi.org/10.1016/j.theriogenology.2014.11.019. PMid:25583222.

Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://dx.doi.org/10.1002/mrd.20494. PMid:16804881.

Ferguson EM, Leese HJ. Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil. 1999;116(2):373-8. http://dx.doi.org/10.1530/jrf.0.1160373. PMid:10615263.

Fontes PK, Castilho AC, Razza EM, Ereno RL, Satrapa RA, Barros CM. Prostaglandin receptors (EP2 and EP4) and angiotensin receptor (AGTR2) mRNA expression increases in the oviducts of Nelore cows submitted to ovarian superstimulation. Anim Reprod Sci. 2014;151(3-4):112-8. http://dx.doi.org/10.1016/j.anireprosci.2014.10.012. PMid:25459076.

Fortune JE, Rivera GM, Yang MY. Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim Reprod Sci. 2004;82-83:109-26. http://dx.doi.org/10.1016/j.anireprosci.2004.04.031. PMid:15271447.

Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50(2):225-32. http://dx.doi.org/10.1095/biolreprod50.2.225. PMid:8142540.

Franchi FF, Satrapa RA, Fontes PK, Santos PH, Razza EM, Emanuelli IP, Ereno RL, Mareco EA, Nogueira MFG, Barros CM, Castilho ACS. Equine chorionic gonadotropin drives the transcriptional profile of immature cumulus-oocyte complexes and in vitro-produced blastocysts of superstimulated Nelore cows. Mol Reprod Dev. 2019;86(11):1639-51. http://dx.doi.org/10.1002/mrd.23251. PMid:31389116.

Fu Z, Kern TS, Hellstrom A, Smith LEH. Fatty acid oxidation and photoreceptor metabolic needs. J Lipid Res. 2021;62:100035. http://dx.doi.org/10.1194/jlr.TR120000618. PMid:32094231.

Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72(2):251-71. http://dx.doi.org/10.1007/s00018-014-1739-4. PMid:25280482.

Guerreiro TM, Gonçalves RF, Melo CFOR, Oliveira DN, Lima EO, Visintin JA, Achilles MA, Catharino RR. A metabolomic overview of follicular fluid in cows. Front Vet Sci. 2018;5:10. http://dx.doi.org/10.3389/fvets.2018.00010 PMid:29473045.

Machado MF, Portela VM, Price CA, Costa IB, Ripamonte P, Amorim RL, Buratini J Jr. Regulation and action of fibroblast growth factor 17 in bovine follicles. J Endocrinol. 2009;202(3):347-53. http://dx.doi.org/10.1677/JOE-09-0145. PMid:19535432.

Orisaka M, Mizutani T, Tajima K, Orisaka S, Shukunami K, Miyamoto K, Kotsuji F. Effects of ovarian theca cells on granulosa cell differentiation during gonadotropin-independent follicular growth in cattle. Mol Reprod Dev. 2006;73(6):737-44. http://dx.doi.org/10.1002/mrd.20246. PMid:16541462.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. http://dx.doi.org/10.1093/nar/29.9.e45. PMid:11328886.

Prates EG, Nunes JT, Pereira RM. A role of lipid metabolism during cumulus-oocyte complex maturation: impact of lipid modulators to improve embryo production. Mediators Inflamm. 2014;2014:692067. http://dx.doi.org/10.1155/2014/692067. PMid:24733963.

Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62-6. http://dx.doi.org/10.1016/S0304-3940(02)01423-4. PMid:12618301.

Santos PH, Fontes PK, Franchi FF, Nogueira MF, Belaz KR, Tata A, Eberlin MN, Sudano MJ, Barros CM, Castilho AC. Lipid profiles of follicular fluid from cows submitted to ovarian superstimulation. Theriogenology. 2017;94:64-70. http://dx.doi.org/10.1016/j.theriogenology.2017.02.002. PMid:28407862.

Santos PH, Satrapa RA, Fontes PK, Franchi FF, Razza EM, Mani F, Nogueira MFG, Barros CM, Castilho ACS. Effect of superstimulation on the expression of microRNAs and genes involved in steroidogenesis and ovulation in Nelore cows. Theriogenology. 2018;110:192-200. http://dx.doi.org/10.1016/j.theriogenology.2017.12.045. PMid:29407901.

Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44(Suppl 3):50-8. http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x. PMid:19660080.

Sudano MJ, Santos VG, Tata A, Ferreira CR, Paschoal DM, Machado R, Buratini J, Eberlin MN, Landim-Alvarenga FD. Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biol Reprod. 2012;87(6):130. http://dx.doi.org/10.1095/biolreprod.112.102897. PMid:23053436.

Warzych E, Pawlak P, Pszczola M, Cieslak A, Madeja ZE, Lechniak D. Interactions of bovine oocytes with follicular elements with respect to lipid metabolism. Anim Sci J. 2017;88(10):1491-7. http://dx.doi.org/10.1111/asj.12799. PMid:28402007.

Webb R, Campbell BK, Garverick HA, Gong JG, Gutierrez CG, Armstrong DG. Molecular mechanisms regulating follicular recruitment and selection. J Reprod Fertil Suppl. 1999;54:33-48. PMid:10692843.
 


Submitted date:
05/02/2023

Accepted date:
07/31/2023

6682b093a9539528595ccc63 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections