Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0066
Animal Reproduction (AR)
Thematic Section: 36th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

How does reproduction account for dairy farm sustainability?

Jaciara Diavão; Abias Santos Silva; Anna Luiza Lacerda Sguizzato; Camila Sousa da Silva; Thierry Ribeiro Tomich; Luiz Gustavo Ribeiro Pereira

Downloads: 0
Views: 516

Abstract

Sustainability - the new hype of the 21st century has brought discomfort for the government and society. Sustainable agriculture is essential to face our most concerning challenges: climate change, food security, and the environmental footprint, all of which add to consumers' opinions and choices. Improvements in reproductive indexes can enhance animal production and efficiency, guaranteeing profit and sustainability. Estrus detection, artificial insemination (AI), embryo transfer (ET), estrus synchronization (ES), and multiple ovulations are some strategies used to improve animal reproduction. This review highlights how reproductive strategies and genetic selection can contribute to sustainable ruminant production. Improved reproductive indices can reduce the number of nonproductive cows in the herd, reducing methane emissions and land use for production while preserving natural resources.

Keywords

fertility, genetic selection, methane emission, methane intensity, milk yield

References

Archer SC, Hudson CD, Green MJ. Use of stochastic simulation to evaluate the reduction in methane emissions and improvement in reproductive efficiency from routine hormonal interventions in dairy herds. PLoS One. 2015;10(6):e0127846. http://dx.doi.org/10.1371/journal.pone.0127846. PMid:26061424.

Baruselli PS, Ferreira RM, Vieira LM, Souza AH, Bó GA, Rodrigues CA. Use of embryo transfer to alleviate infertility caused by heat stress. Theriogenology. 2020;155(1):1-11. http://dx.doi.org/10.1016/j.theriogenology.2020.04.028. PMid:32562738.

Bragança LG, Zangirolamo AF. Strategies for increasing fertility in high productivity dairy herds. Anim Reprod. 2018;15(3):256-60. http://dx.doi.org/10.21451/1984-3143-AR2018-0079. PMid:34457070.

Brasil. Ministério da Ciência, Tecnologia e Inovações [homepage on the Internet]. Brasília: Ministério da Ciência, Tecnologia e Inovações; 2023. Resultados do Inventário nacional de emissões de gases de efeito estufa por unidade federativa; 2023 June 22 [cited 2023 June 22]. Available from: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/arquivos/LIVRORESULTADOINVENTARIO30062021WEB.pdf

Brehme U, Stollberg U, Holz R, Schleusener T. ALT pedometer -New sensor-aided measurement system for improvement in oestrus detection. Comput Electron Agric. 2008;62(1):73-80. http://dx.doi.org/10.1016/j.compag.2007.08.014.

Breider IS, Wall E, Garnsworthy PC. Short communication: heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows. J Dairy Sci. 2019;102(8):7277-81. http://dx.doi.org/10.3168/jds.2018-15909. PMid:31202647.

Browne NA, Behrendt R, Kingwell RS, Eckard RJ. Does producing more product over a lifetime reduce greenhouse gas emissions and increase profitability in dairy and wool enterprises? Anim Prod Sci. 2015;55(1):49-55. http://dx.doi.org/10.1071/AN13188.

Burgers EEA, Kok A, Goselink RMA, Hogeveen H, Kemp B, van Knegsel ATM. Fertility and milk production on commercial dairy farms with customized lactation lengths. J Dairy Sci. 2021;104(1):443-58. http://dx.doi.org/10.3168/jds.2019-17947. PMid:32747099.

Cairo FC. Eficiência alimentar em fêmeas 1/2 Hol x 1/2 Gir selecionadas para consumo alimentar residual e o impacto do aumento da produção de leite na intensidade de emissão de metano entérico em gado leitero no Brasil [thesis]. Itapetinga: Universidade Estadual do Sudoeste da Bahia; 2023.

Calderón-Chagoya R, Hernández-Medrano JH, Ruiz-López FJ, García-Ruiz A, Vega-Murillo VE, Mejía-Melchor EI, Garnsworthy P, Román-Ponce SI. Genetic selection aimed to reduce methane emissions and its effect on milk components. Rev Mex Cienc Pecu. 2021;12(1):1-17. http://dx.doi.org/10.22319/rmcp.v12i1.5347.

de Haas Y, Veerkamp RF, de Jong G, Aldridge MN. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal. 2021;15(Suppl 1):100294. http://dx.doi.org/10.1016/j.animal.2021.100294. PMid:34246599.

de Haas Y, Windig JJ, Calus MPL, Dijkstra J, de Haan M, Bannink A, Veerkamp RF. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci. 2011;94(12):6122-34. http://dx.doi.org/10.3168/jds.2011-4439. PMid:22118100.

De Vries A. Economic value of pregnancy in dairy cattle. J Dairy Sci. 2006;89(10):3876-85. http://dx.doi.org/10.3168/jds.S0022-0302(06)72430-4. PMid:16960063.

De Vries A, Marcondes MI. Review: overview of factors affecting productive lifespan of dairy cows. Animal. 2020;14(S1):s155-64. http://dx.doi.org/10.1017/S1751731119003264. PMid:32024570.

Duran PG, Corpuz HLV, Gaspar DCA, Misola CM, Munar MP, Hufana-Duran D. Non-invasive clinical diagnosis of estrus for AI synchronization using vaginal cytology in three bubaline breeds in the Philippines. J Pharm. Biol. Chem Sci. 2015;6(1):562-7.

Eastham NT, Coates A, Cripps P, Richardson H, Smith R, Oikonomou G. Associations between age at first calving and subsequent lactation performance in UK Holstein and Holstein-Friesian dairy cows. PLoS One. 2018;13(6):e0197764. http://dx.doi.org/10.1371/journal.pone.0197764. PMid:29897929.

FAO [homepage on the Internet]. Rome: FAO; 2023. Key facts and findings; 2023 Apr 28 [cited 2023 May 3]. Available from: https://www.fao.org/news/story/en/item/197623/icode/

Firk R, Stamer E, Junge W, Krieter J. Automation of oestrus detection in dairy cows: a review. Livest Prod Sci. 2002;75(3):219-32. http://dx.doi.org/10.1016/S0301-6226(01)00323-2.

Fresco S, Boichard D, Fritz S, Lefebvre R, Barbey S, Gaborit M, Martin P. Comparison of methane production, intensity, and yield throughout lactation in Holstein cows. J Dairy Sci. 2023;106(6):4147-57. http://dx.doi.org/10.3168/jds.2022-22855. PMid:37105882.

Garnsworthy PC. The environmental impact of fertility in dairy cows: a modelling approach to predict methane and ammonia emissions. Anim Feed Sci Technol. 2004;112(1):211-23. http://dx.doi.org/10.1016/j.anifeedsci.2003.10.011.

Gifford JAH, Gifford CA. Role of reproductive biotechnologies in enhancing food security and sustainability. Anim Front. 2013;3(3):14-9. http://dx.doi.org/10.2527/af.2013-0019.

González-Recio O, López-Paredes J, Ouatahar L, Charfeddine N, Ugarte E, Alenda R, Jiménez-Montero JA. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. J Dairy Sci. 2020;103(8):7210-21. http://dx.doi.org/10.3168/jds.2019-17598. PMid:32475662.

Hossein‑Zadeh NG. Estimates of the genetic contribution to methane emission in dairy cows: a meta‑analysis. Sci Rep. 2022;12(1):12352. http://dx.doi.org/10.1038/s41598-022-16778-z. PMid:35853993.

Hristov AN, Ott T, Tricarico JM, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E, Oosting SJ, Gerber PJ, Henderson B, Makkar HPS, Firkins JL. Special topics-mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J Anim Sci. 2013a;91(11):5095-113. http://dx.doi.org/10.2527/jas.2013-6585. PMid:24045470.

Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Tang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S. Mitigation of greenhouse gas emissions in livestock production - A Review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS, editors. FAO animal production and health paper. Rome, Italy: FAO; 2013b. p. 177.

Hufana-Duran D, Duran PG. Animal reproduction strategies for sustainable livestock production in the tropics. IOP Conf Ser Earth Environ Sci. 2020;492:012065. http://dx.doi.org/10.1088/1755-1315/492/1/012065.

Kamalanathan S, Houlahan K, Miglior F, Chud TCS, Hailemariam DJSD, Plastow G, de Oliveira HR, Baes CF, Schenkel FS. Genetic analysis of methane emission traits in Holstein dairy cattle. Animals (Basel). 2023;13(8):1308. http://dx.doi.org/10.3390/ani13081308. PMid:37106871.

Kandel P, Vanderick S, Vanrobays M-L, Soyeurt H, Gengler N. Consequences of genetic selection for environmental impact traits on economically important traits in dairy cows. Anim Prod Sci. 2018;58(10):1779-87. http://dx.doi.org/10.1071/AN16592.

Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci. 2014;97(6):3231-61. http://dx.doi.org/10.3168/jds.2013-7234. PMid:24746124.

Kok A, Lehmann JO, Kemp B, Hogeveen H, van Middelaar CE, de Boer IJM, van Knegsel ATM. Production, partial cash flows and greenhouse gas emissions of simulated dairy herds with extended lactations. Animal. 2019;13(5):1074-83. http://dx.doi.org/10.1017/S1751731118002562. PMid:30345949.

Króliczewska B, Pecka-Kiełb E, Bujok J. Strategies used to reduce methane emissions from ruminants: controversies and issues. Agriculture. 2023;13(3):602. http://dx.doi.org/10.3390/agriculture13030602.

Lahart B, Shalloo L, Herron J, O’Brien D, Fitzgerald R, Boland TM, Buckley F. Greenhouse gas emissions and nitrogen efficiency of dairy cows of divergent economic breeding index under seasonal pasture-based management. J Dairy Sci. 2021;104(7):8039-49. http://dx.doi.org/10.3168/jds.2020-19618. PMid:33934859.

Lehmann JO, Fadel JG, Mogensen L, Kristensen T, Gaillard C, Kebreab E. Effect of calving interval and parity on milk yield per feeding day in Danish commercial dairy herds. J Dairy Sci. 2016;99(1):621-33. http://dx.doi.org/10.3168/jds.2015-9583. PMid:26585482.

Lehmann JO, Mogensen L, Kristensen T. Extended lactations in dairy production: Economic, productivity and T climatic impact at herd, farm and sector level. Livest Sci. 2019;220(2):100-10. http://dx.doi.org/10.1016/j.livsci.2018.12.014.

Lehmann JO, Mogensen L, Kristensen T. Extended lactations may improve cow health, productivity and reduce green-house gas emissions from organic dairy production. Org Agric. 2014;4(4):295-9. http://dx.doi.org/10.1007/s13165-014-0070-6.

Lohuis MM. Potential benefits of bovine embryo-manipulation technologies to genetic improvement programs. Theriogenology. 1995;43(1):51-60. http://dx.doi.org/10.1016/0093-691X(94)00016-N.

López-Paredes J, Goiri I, Atxaerandio R, García-Rodríguez A, Ugarte E, Jiménez-Montero JÁ, Alenda R, González-Recio O. Mitigation of greenhouse gases in dairy cattle via genetic selection: 1. Genetic parameters of direct methane using noninvasive methods and proxies of methane. J Dairy Sci. 2020;103(8):7199-209. http://dx.doi.org/10.3168/jds.2019-17597. PMid:32475675.

Louca A, Legates JE. Production losses in dairy cattle due to days open. J Dairy Sci. 1968;51(4):573-83. http://dx.doi.org/10.3168/jds.S0022-0302(68)87031-6.

Mayo LM, Silvia WJ, Ray DL, Jones BW, Stone AE, Tsai IC, Clark JD, Bewley JM, Heersche G Jr. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. J Dairy Sci. 2019;102(3):2645-2656. http://dx.doi.org/10.3168/jds.2018-14738. PMid:30692002.

Min B-R, Lee S, Jung H, Miller DN, Chen R. Enteric methane emissions and animal performance in dairy and beef cattle production: strategies, opportunities, and impact of reducing emissions. Animals (Basel). 2022;12(8):948. http://dx.doi.org/10.3390/ani12080948. PMid:35454195.

Moate PJ, Deighton MH, Williams SRO, Pryce JE, Hayes BJ, Jacobs JL, Eckard RJ, Hannah MC, Wales WJ. Reducing the carbon footprint of Australian milk production by mitigation of enteric methane emissions. Anim Prod Sci. 2015;56(7):1017-34. http://dx.doi.org/10.1071/AN15222.

Negri R, Aguilar I, Feltes GL, Cobuci JA. Selection for test-day milk yield and thermotolerance in Brazilian Holstein cattle. Animals (Basel). 2021;11(1):128. http://dx.doi.org/10.3390/ani11010128. PMid:33430092.

Palmer MA, Olmos G, Boyle LA, Mee JF. Estrus detection and estrus characteristics in housed and pastured Holstein-Friesian cows. Theriogenology. 2010;74(2):255-64. http://dx.doi.org/10.1016/j.theriogenology.2010.02.009. PMid:20451993.

Pinedo P, Santos JEP, Chebel RC, Galvão KN, Schuenemann GM, Bicalho RC, Gilbert RO, Rodriguez-Zas SL, Seabury CM, Rosa G, Thatcher W. Associations of reproductive indices with fertility outcomes, milk yield, and survival in Holstein cows. J Dairy Sci. 2020;103(7):6647-60. http://dx.doi.org/10.3168/jds.2019-17867. PMid:32359989.

Purvis B, Mao Y, Robinson D. Three pillars of sustainability: in search of conceptual origins. Sustain Sci. 2019;14(3):681-95. http://dx.doi.org/10.1007/s11625-018-0627-5.

Richardson CM, Amer PR, Quinton C, Crowley J, Hely FS, van den Berg I, Pryce JE. Reducing greenhouse gas emissions through genetic selection in the Australian dairy industry. J Dairy Sci. 2022;105(5):4272-88. http://dx.doi.org/10.3168/jds.2021-21277. PMid:35221068.

Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. Ruminants, climate change and climate policy. Nat Clim Chang. 2014;4(1):2-4. http://dx.doi.org/10.1038/nclimate2081.

Roelofs J, López-Gatius F, Hunter RHF, van Eerdenburg FJCM, Hanzen CH. When is a cow in estrus? Clinical and practical aspects. Theriogenology. 2010;74(3):327-44. http://dx.doi.org/10.1016/j.theriogenology.2010.02.016. PMid:20363020.

Rowson LE. Methods of inducing multiple ovulation in cattle. J Endocrinol. 1951;7(3):260-70. http://dx.doi.org/10.1677/joe.0.0070260. PMid:14861358.

Różańska-Zawieja J, Winnicki S, Zyprych-Walczak J, Szabelska-Beresewicz A, Siatkowski I, Nowak W, Stefanska B, Kujawiak R, Sobek Z. The effect of feeding management and culling of cows on the lactation curves and milk production of primiparous dairy cows. Animals (Basel). 2021;11(7):1959. http://dx.doi.org/10.3390/ani11071959. PMid:34209096.

Sakatani M. Global warming and cattle reproduction: will increase in cattle numbers progress to global warming? J Reprod Dev. 2022;68(2):90-5. http://dx.doi.org/10.1262/jrd.2021-149. PMid:35095022.

Santos JS, Miziara F, Fernandes HS, Miranda RC, Collevatti RG. Technification in dairy farms may reconcile habitat conservation in a Brazilian Savanna region. Sustainability (Basel). 2021;13(10):5606. http://dx.doi.org/10.3390/su13105606.

Sehested J, Gaillard C, Lehmann JO, Maciel GM, Vestergaard M, Weisbjerg MR, Mogensen L, Larsen LB, Poulsen NA, Kristensen T. Review: extended lactation in dairy cattle. Animal. 2019;13(S1):s65-74. http://dx.doi.org/10.1017/S1751731119000806. PMid:31280750.

Senger PL. The estrus detection problem: new concepts, technologies, and possibilities. J Dairy Sci. 1994;77(9):2745-53. http://dx.doi.org/10.3168/jds.S0022-0302(94)77217-9. PMid:7814743.

Speicher JA, Meadows CE. Milk production costs associated with length of calving interval of Holstein cows. J Dairy Sci. 1967;50:975.

Sypniewski M, Strabel T, Pszczola M. Genetic variability of methane production and concentration measured in the breath of polish Holstein-Friesian cattle. Animals (Basel). 2021;11(11):3175. http://dx.doi.org/10.3390/ani11113175. PMid:34827907.

USDA [homepage on the Internet]. USA: The United States Department of Agriculture; 2023. Economic Research Service using data from the U.S. Environment Protection Agency’s Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020; 2023 June 22 [cited 2023 June 22]. Available from: https://www.ers.usda.gov/topics/natural-resources-environment/climate-change/

Wall E, Coffey MP, Pollott GE. The effect of lactation length on greenhouse gas emissions from the national dairy herd. Animal. 2012;6(11):1857-67. http://dx.doi.org/10.1017/S1751731112000936. PMid:23031357.

Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, Jonell M, Clark M, Gordon L, Fanzo J, Hawkes C, Zurayk R, Rivera JA, De Vries W, Sibanda LM, Afshin A, Chaudhary A, Herrero M, Agustina R, Branca F, Lartey A, Fan S, Crona B, Fox E, Bignet V, Troell M, Lindahl T, Singh S, Cornell SE, Reddy KS, Narain S, Nishtar S, Murray CJL. Food in the anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447-92. http://dx.doi.org/10.1016/S0140-6736(18)31788-4. PMid:30660336.

Wiersum KF. 200 years of sustainability in forestry: lessons from history. Environ Manage. 1995;19(3):321-9. http://dx.doi.org/10.1007/BF02471975.

Wiltbank M, Hernando L, Roberto S, Siwat S, Ahmet G. Changes in reproductive physiology of lactating dairy cows due to elevated steroid metabolism. Theriogenology. 2006;65(1):17-29. http://dx.doi.org/10.1016/j.theriogenology.2005.10.003. PMid:16290258.

Yanga DS, Jaja IF. Culling and mortality of dairy cows: why it happens and how it can be mitigated. F1000Res. 2021;10:1014. http://dx.doi.org/10.12688/f1000research.55519.2. PMid:35966963.

Zhang X, Amer PR, Jenkins GM, Sise JA, Santos B, Quinton C. Prediction of effects of dairy selection indexes on methane emissions. J Dairy Sci. 2019;102(12):11153-68. http://dx.doi.org/10.3168/jds.2019-16943. PMid:31587912.
 


Submitted date:
05/11/2023

Accepted date:
06/27/2023

64cbaeb0a953957cfa4d61d4 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections