Animal Reproduction (AR)
Animal Reproduction (AR)
Thematic Section: 36th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Assisted Reproductive Technologies (ART) and genome editing to support a sustainable livestock

Alejo Menchaca

Downloads: 0
Views: 29


Abstract: This article provides an overview of assisted reproductive technologies (ART) and genome engineering to improve livestock production systems for the contribution of global sustainability. Most ruminant production systems are conducted on grassland conditions, as is the case of South American countries that are leaders in meat and milk production worldwide with a well-established grass-feed livestock. These systems have many strengths from an environmental perspective and consumer preferences but requires certain improvements to enhance resource efficiency. Reproductive performance is one of the main challenges particularly in cow-calf operations that usually are conducted under adverse conditions and thus ART can make a great contribution. Fixed-time artificial insemination is applied in South America in large scale programs as 20 to 30% of cows receive this technology every year in each country, with greater calving rate and significant herd genetic gain occurred in this region. Sexed semen has also been increasingly implemented, enhancing resource efficiency by a) obtaining desired female replacement and improving animal welfare by avoiding newborn male sacrifice in dairy industry, or b) alternatively producing male calves for beef industry. In vitro embryo production has been massively applied, with this region showing the greatest number of embryos produced worldwide leading to significant improvement in herd genetics and productivity. Although the contribution of these technologies is considerable, further improvements will be required for a significant livestock transformation and novel biotechnologies such as genome editing are already available. Through the CRISPR/Cas-based system it is possible to enhance food yield and quality, avoid animal welfare concerns, overcome animal health threats, and control pests and invasive species harming food production. In summary, a significant enhancement in livestock productivity and resource efficiency can be made through reproductive technologies and genome editing, improving at the same time profitability for farmers, and global food security and sustainability.


FTAI, MOET, PIV, sex-sorted semen, CRISPR


Baruselli PS, Ferreira RM, Sá MF Fo, Bó GA. Review: using artificial insemination v. natural service in beef herds. Animal. 2018;12(Suppl 1):s45-52. PMid:29554986.

Bó GA, Huguenine E, de la Mata JJ, Núñez-Olivera R, Baruselli PS, Menchaca A. Programs for fixed-time artificial insemination in South American beef cattle. Anim Reprod. 2018;15(Suppl 1):952-62.

Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, Whitelaw CBA, Archibald AL. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol. 2018;92(16):e00415-18. PMid:29925651.

Carballar-Lejarazú R, Ogaugwu C, Tushar T, Kelsey A, Pham TB, Murphy J, Schmidt H, Lee Y, Lanzaro GC, James AA. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proc Natl Acad Sci USA. 2020;117(37):22805-14. PMid:32839345.

Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol. 2016;34(5):479-81. PMid:27153274.

Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10(8):e0136690. PMid:26305800.

Davis TC, White RR. Breeding animals to feed people: the many roles of animal reproduction in ensuring global food security. Theriogenology. 2020;150:27-33. PMid:32088028.

Dearden PK, Gemmell NJ, Mercier OR, Lester PJ, Scott MJ, Newcomb RD, Buckley TR, Jacobs JME, Goldson SG, Penman DR. The potential for the use of gene drives for pest control in New Zealand: a perspective. J R Soc N Z. 2018;48(4):225-44.

DeRamus HA, Clement TC, Giampola DD, Dickison PC. Methane emissions of beef cattle on forages: efficiency of grazing management systems. J Environ Qual. 2003;32(1):269-77. PMid:12549566.

Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, Hansen PJ. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J Dairy Sci. 2014;97(9):5508-20. PMid:24996281.

Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. eLife. 2014;3:e03401. PMid:25035423.

FAO [homepage on the Internet]. Rome: FAO; 2023. FAOSTAT; 2023 Mar 24 [cited 2023 May 10]. Available from:

FAO. Shaping the future of livestock sustainably, responsibly, efficiently. Berlin: FAO; 2018.

FDA. Risk assessment summary [Internet]. Silver Spring: FDA; 2022 [cited 2023 Jul 21]. Available from:

Fresia P, Pimentel S, Iriarte V, Marques L, Durán V, Saravia A, Novas R, Basika T, Ferenczi A, Castells D, Saporiti T, Cuore U, Losiewicz S, Fernández F, Ciappesoni G, Dalla-Rizza M, Menchaca A. Historical perspective and new avenues to control the myiasis-causing fly Cochliomyia hominivorax in Uruguay. Agrocienc Urug. 2021;25(2):e974.

Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 2017;18(1):13. PMid:28143571.

GISD [homepage on the Internet]. Rome: ISSG; 2021. 100 of the world’s worst invasive alien species; 2021 [cited 2021 Mar 15]. Available from:

Glaze JB. Genetic selection for fertility and performance. In: Proceedings: Applied Reproductive Strategies in Beef Cattle; 2011 Aug/Sep 31-1; Boise, United States. ARSBC; 2011. p. 255-62.

Hoekstra JM, Boucher TM, Ricketts TH, Roberts C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett. 2005;8(1):23-9.

Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36(11):1062-6. PMid:30247490.

Lancaster PA, Larson RL. Evaluation of strategies to improve the environmental and economic sustainability of cow–calf production systems. Animals. 2022;12(3):385. PMid:35158708.

Mapletoft RJ, Bó GA, Baruselli PS, Menchaca A, Sartori R. Evolution of knowledge on ovarian physiology and its contribution to the widespread application of reproductive biotechnologies in South American cattle. Anim Reprod. 2018;15(Suppl 1):1003-14. PMid:36249848.

McCleary S, Strong R, McCarthy RR, Edwards JC, Howes EL, Stevens LM, Sánchez-Cordón PJ, Núñez A, Watson S, Mileham AJ, Lillico SG, Tait-Burkard C, Proudfoot C, Ballantyne M, Whitelaw CBA, Steinbach F, Crooke HR. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Sci Rep. 2020;10(1):8951. PMid:32488046.

Melton BE. Attaching economic figures to production traits [Internet]. In: National Cattlemen's Association Annual Meeting; 1995 Jan 25; Nashville, United States. Centennial: National Cattlemen's Association; 1995 [cited 2023 Jul 21]. p. 1-27. Available from:

Menchaca A, Santos-Neto PC, Cuadro F, Souza-Neves M, Crispo M. From reproductive technologies to genome editing in small ruminants: an embryo’s journey. Anim Reprod. 2018;15(Suppl 1):984-95. PMid:36249839.

Menchaca A. Sustainable food production: the contribution of genome editing in livestock. Sustainability. 2021;13(12):6788.

Modlinska K, Pisula W. Selected psychological aspects of meat consumption - a short review. Nutrients. 2018;10(9):1301. PMid:30223443.

Mojica FJM, Montoliu L. On the origin of CRISPR-Cas technology : from prokaryotes to mammals. Trends Microbiol. 2016;24(10):811-20. PMid:27401123.

Moro D, Byrne M, Kennedy M, Campbell S, Tizard M. Identifying knowledge gaps for gene drive research to control invasive animal species: the next CRISPR step. Glob Ecol Conserv. 2018;13:e00363.

Mueller ML, Cole JB, Sonstegard TS, Van Eenennaam AL. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J Dairy Sci. 2019;102(5):4215-26. PMid:30852022.

Oesterheld M, Loreti J, Semmartin M, Paruelo JM. Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker LR, editor. Ecosystems of disturbed ground. Amsterdam: Elsevier; 1999. p. 287-306.

Ortiz-Colón G, Fain SJ, Parés IK, Curbelo-Rodríguez J, Jiménez-Cabán E, Pagán-Morales M, Gould WA. Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Clim Change. 2018;146(1-2):47-58.

Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Ganade G, Gossner MM, Guadagnin DL, Lorenzen K, Jacobi CM, Weisser WW, Pillar VD. Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib. 2015;21(12):1455-60.

Oyarzabal M, Andrade B, Pillar VD, Paruelo J. Temperate subhumid grasslands of southern South America. In: Goldstein MI, DellaSala DA, editors. Encyclopedia of the world’s biomes. Amsterdam: Elsevier; 2020. p. 577-93.

Paruelo JM, Oesterheld M, Altesor A, Piñeiro G, Rodríguez C, Baldassini P, Irisarri G, López-Mársico L, Pillar VD. Grazers and fires: their role in shaping the structure and functioning of the Río de la Plata Grasslands. Ecol Austral. 2022;32(2bis):784-805.

Petersen GEL, Buntjer JB, Hely FS, Byrne TJ, Doeschl-Wilson A. Modeling suggests gene editing combined with vaccination could eliminate a persistent disease in livestock. Proc Natl Acad Sci USA. 2022;119(9):e2107224119. PMid:35217603.

Pham TB, Phong CH, Bennett JB, Hwang K, Jasinskiene N, Parker K, Stillinger D, Marshall JM, Carballar-Lejarazú R, James AA. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet. 2019;15(12):e1008440. PMid:31856182.

PIC [homepage on the Internet]. Hendersonville: PIC; 2021. Genus developing PRRSv resistance; 2021 Jun 22 [cited 2023 Jul 21]. Available from:

Seidel GE Jr, DeJarnette JM. Applications and world-wide use of sexed semen in cattle. Anim Reprod Sci. 2022;246:106841. PMid:34507848.

SEMEX [homepage on the Internet]. Madison: SEMEX; 2018. Recombinetics and SEMEX form alliance to improve animal well-being; 2018 May 28 [cited 2021 Mar 15]. Available from:

Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1(11):1446.

Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, Meacci D, Gribble M, Morselli G, Burt A, Nolan T, Crisanti A. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020;38(9):1054-60. PMid:32393821.

Slingenbergh JI, Gilbert M, Balogh KID, Wint W. Ecological sources of zoonotic diseases. Rev Sci Tech. 2004;23(2):467-84. PMid:15702714.

Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Haan CD. Livestock’s long shadow: environmental issues and options. Renew Resour J. 2006;24:15-7.

Tait-Burkard C, Doeschl-Wilson A, McGrew MJ, Archibald AL, Sang HM, Houston RD, Whitelaw CB, Watson M. Livestock 2.0-genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 2018;19(1):204. PMid:30477539.

UN. Review of the Sustainable Development Goals: the science perspective. Paris: International Council for Science; 2015.

Vargas-Terán M, Hofmann HC, Tweddle NE. Impact of screwworm eradication programmes using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005. p. 629-50.

Viana JHM, Figueiredo ACS, Gonçalves RLR, Siqueira LGB. A historical perspective of embryo-related technologies in South America. Anim Reprod. 2018;15(Suppl 1):963-70. PMid:36249847.

Viana JHM. Statistics of embryo production and transfer in domestic farm animals. Embryo Technol Newsl. 2022;40(4):22-40.

Weary DM, Ventura BA, Von Keyserlingk MAG. Societal views and animal welfare science: understanding why the modified cage may fail and other stories. Animal. 2016;10(2):309-17. PMid:26206166.

Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep. 2018;8(1):7661. PMid:29769555.

Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016;34(1):20-2. PMid:26641533.

Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog. 2018;14(12):e1007193. PMid:30543715.

Yamada A, Kahn LH, Kaplan B, Monath TP, Jack W, Conti L. Confronting emerging zoonoses: the One Health Paradigm. Tokyo: Springer; 2014.

Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One. 2017;12(10):e0186056. PMid:29016691.

Submitted date:

Accepted date:

64f22dfaa953951cc11f4295 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections