Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0101
Animal Reproduction (AR)
ORIGINAL ARTICLE

NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC

Helena Fabiana Reis de Almeida Saraiva; Juliano Rodrigues Sangalli; Luana Alves; Juliano Coelho da Silveira; Flávio Vieira Meirelles; Felipe Perecin

Downloads: 1
Views: 101

Abstract

During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.

Keywords

In vitro maturation, pre-maturation, ZFP36L2, oocyte, cumulus cells

References

Adachi S, Homoto M, Tanaka R, Hioki Y, Murakami H, Suga H, Matsumoto M, Nakayama KL, Hatta T, Iemura A, Natsume T. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway. Nucleic Acids Res. 2014;42(15):10037-49. http://doi.org/10.1093/nar/gku652. PMid:25106868.

Andreou AZ, Harms U, Klostermeier D. eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region. RNA Biol. 2017;14(1):113-23. http://doi.org/10.1080/15476286.2016.1259782. PMid:27858515.

Ball CB, Rodriguez KF, Stumpo DJ, Ribeiro-Net F, Korach KS, Blackshear PJ, Mimbaumer L, Ramos SBV. The RNA-binding protein, ZFP36L2, influences ovulation and oocyte maturation. PLoS One. 2014;9(5):e97324. http://doi.org/10.1371/journal.pone.0097324. PMid:24830504.

Belloc E, Méndez R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature. 2008;452(7190):1017-21. http://doi.org/10.1038/nature06809. PMid:18385675.

Belloc E, Piqué M, Méndez R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem Soc Trans. 2008;36(Pt 4):665-70. http://doi.org/10.1042/BST0360665. PMid:18631137.

Bettegowda A, Lee KB, Smith GW. Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod Fertil Dev. 2008;20(1):45-53. http://doi.org/10.1071/RD07156. PMid:18154697.

Brook M, Smith JWS, Gray NK. The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction. 2009;137(4):595-617. http://doi.org/10.1530/REP-08-0524. PMid:19225045.

Brooks SA, Connolly JE, Rigby WFC. The role of mRNA turnover in the regulation of Tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element dependent, autoregulatory pathway. J Immunol. 2004;172(12):7263-71. http://doi.org/10.4049/jimmunol.172.12.7263. PMid:15187101.

Camargo LSA, Munk M, Sales JN, Wohlres-Viana S, Quintão CCR, Viana JHM. Differential gene expression betweenin vivoandin vitromaturation: a comparative study with bovine oocytes derived from the same donor pool. JBRA Assist Reprod. 2019;23(1):7-14. http://doi.org/10.5935/1518-0557.20180084. PMid:30614236.

Campen KA, Clark ZL, Olds MA, McNatty KP, Pitman JL. The in-vitro effects of cAMP and cGMP modulators on inter-cellular dye transfer and gene expression levels in rat cumulus cell-oocyte complexes. Mol Cell Endocrinol. 2016;420:46-56. http://doi.org/10.1016/j.mce.2015.11.025. PMid:26628038.

Chen J, Torcia S, Xie F, Lin CJ, Cakmak H, Franciosi F, Horner K, Onodera C, Song JS, Cedars MI, Ramalho-Santos M, Conti M. Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol. 2013;15(12):1415-23. http://doi.org/10.1038/ncb2873. PMid:24270888.

Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW, Worthington MT, Sturgill TW. MAPKAP Kinase 2 phosphorilates Tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3- binding. J Biol Chem. 2004;279(11):10176-84. http://doi.org/10.1074/jbc.M310486200. PMid:14688255.

Chu T, Dufort I, Sirard MA. Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology. 2012;77(9):1928-38. http://doi.org/10.1016/j.theriogenology.2012.01.015. PMid:22444561.

Clark A, Dean J, Tudor C, Saklatvala J. Saklatvala. Post-transcriptional gene regulation by MAP kinases via AU-rich elements. Front Biosci. 2009;14(3):847-71. http://doi.org/10.2741/3282. PMid:19273104.

Clarke HJ. Post-transcriptional control of gene expression during mouse oogenesis. Results Probl Cell Differ. 2012;55:1-21. http://doi.org/10.1007/978-3-642-30406-4_1. PMid:22918798.

Clement SL, Schecked C, Stoecklin G, Lykke-Andersen J. Phosphorylation of Tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenilase recruitment. Mol Cell Biol. 2011;31(2):256-66. http://doi.org/10.1128/MCB.00717-10. PMid:21078877.

Collart MA. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip Rev RNA. 2016;7(4):438-54. http://doi.org/10.1002/wrna.1332. PMid:26821858.

Conti M, Hsieh M, Park JY, Su YQ. Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol. 2006;20(4):715-23. http://doi.org/10.1210/me.2005-0185. PMid:16051667.

Conti M, Martins JPS, Han SJ, Franciosi F. Translational control in the germ line. In: Menon KMJ, Goldstrohm A, editors. Post-transcriptional mechanisms in endocrine regulation. Cham: Springer; 2016. p. 129-56. http://doi.org/10.1007/978-3-319-25124-0_7.

Craig AWB, Haghighat A, Yu ATK, Sonenberg N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature. 1998;392(6675):520-3. http://doi.org/10.1038/33198. PMid:9548260.

de Toeuf B, Soin R, Nazih A, Dragojevic M, Jurenas D, Delacourt N, Ngoc LV, Garcia-Pino A, Kruys V, Gueydan C. ARE-mediated decay controls gene expression and cellular metabolism upon oxygen variations. Sci Rep. 2018;8(1):5211. http://doi.org/10.1038/s41598-018-23551-8. PMid:29581565.

Del Collado M, da Silveira JC, Oliveira MLF, Alves MSM, Simas RC, Godoy AT, Coelho MB, Marques LA, Carriero MM, Nogueira MFG, Eberlin MN, Silva LA, Meirelles FV, Perecin F. In vitro maturation impacts cumulus-oocyte complex metabolism and stress in cattle. Reproduction. 2017a;154(6):881-93. http://doi.org/10.1530/REP-17-0134. PMid:28971896.

Del Collado M, da Silveira JC, Sangalli JR, Andrade GM, Sousa LR, Silva LA, Meirelles FV, Perecin F. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci Rep. 2017b;7(1):2645. http://doi.org/10.1038/s41598-017-02467-9. PMid:28572619.

Dumdie JN, Cho K, Ramaiah M, Skarbrevik D, Mora-Castilla S, Stumpo DF, Lykke-Andersen J, Laurent LC, Blackshear PF, Wilkinson MF, Cook-Andersen H. Global transcriptional silencing and developmental competence in the oocyte mediated by the mRNA decay activator ZFP36L2. Dev Cell. 2018;44(3):392-402.e7. http://doi.org/10.1016/j.devcel.2018.01.006. PMid:29408237.

Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. BioEssays. 1991;13(11):569-74. http://doi.org/10.1002/bies.950131105. PMid:1772412.

Fenger-Gron M, Fillman C, Morrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 2005;20(6):905-15. http://doi.org/10.1016/j.molcel.2005.10.031. PMid:16364915.

Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina S, Fadini R, Dal Canto M, Renzini MM, Albertini DF, Luciano AB. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biol Reprod. 2014;91(3):61. http://doi.org/10.1095/biolreprod.114.118869. PMid:25078681.

Gosden R, Lee B. Review series Portrait of an oocyte: our obscure origin. J Clin Invest. 2010;120(4):973-83. http://doi.org/10.1172/JCI41294. PMid:20364095.

Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111. PMid:24591639.

Guillén-Boixet J, Buzon V, Salvatella X, Méndez R. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. Elife. 2016;5:e19298. http://doi.org/10.7554/eLife.19298. PMid:27802129.

Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79(4):617-27. http://doi.org/10.1016/0092-8674(94)90547-9. PMid:7954828.

Huot J, Lambert H, Lavoie JN, Guimond A, Houle E, Landry J. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem. 1995;227(1-2):416-27. http://doi.org/10.1111/j.1432-1033.1995.tb20404.x. PMid:7851416.

Igea A, Méndez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29(13):2182-93. http://doi.org/10.1038/emboj.2010.111. PMid:20531391.

Jia Z, Wang X. Effects of C-type natriuretic peptide on meiotic arrest and developmental competence of bovine oocyte derived from small and medium follicles. Sci Rep. 2020;10(1):18213. http://doi.org/10.1038/s41598-020-75354-5. PMid:33106527.

Katz-Jaffe MG, McCallie BR, Preis KA, Filipovits J, Gardner DK. Transcriptome analysis of in vivo and in vitro matured bovine MII oocytes. Theriogenology. 2009;71(6):939-46. http://doi.org/10.1016/j.theriogenology.2008.10.024. PMid:19150733.

Labrecque R, Vigneault C, Blondin P, Sirard MA. Gene expression analysis of bovine oocytes with high developmental competence obtained from FSH-stimulated animals. Mol Reprod Dev. 2013;80(6):428-40. http://doi.org/10.1002/mrd.22177. PMid:23559376.

Lefebvre C, Terret ME, Djiane A, Rassinier P, Mao B, Verlhac MH. Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol. 2002;157(4):603-13. http://doi.org/10.1083/jcb.200202052. PMid:12011110.

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14(3):141-52. http://doi.org/10.1038/nrm3531. PMid:23429793.

Liu X, Li X, Ma R, Xiong B, Sun SC, Liu H, Gu L. Tristetraprolin functions in cytoskeletal organization during mouse oocyte maturation. Oncotarget. 2016;7(33):53330-8. http://doi.org/10.18632/oncotarget.10755. PMid:27458159.

Liu Y, Cui J, Hoffman AR, Hu JF. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif. 2023;56(3):e13367. http://doi.org/10.1111/cpr.13367. PMid:36547008.

Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modin S. Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3′, 5′-monophosphate, and glutathione. Mol Reprod Dev. 2005;71(3):389-97. http://doi.org/10.1002/mrd.20304. PMid:15803456.

Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, Sirard MA, Clarke HJ, Khandjan EW, Richard FJ, Hyttel P, Robert C. The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod. 2014;91(4):90. http://doi.org/10.1095/biolreprod.114.119867. PMid:25143353.

Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JLE. MAPKAP kinase 2 blocks Tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem. 2010;285(36):27590-600. http://doi.org/10.1074/jbc.M110.136473. PMid:20595389.

McGrew LL, Ritcher JD. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J. 1990;9(11):3743-51. http://doi.org/10.1002/j.1460-2075.1990.tb07587.x. PMid:2145153.

Memili E, Dominko T, First NL. Onset of transcription in bovine oocytes and preimplantation embryos. Mol Reprod Dev. 1998;51(1):36-41. http://doi.org/10.1002/(SICI)1098-2795(199809)51:1<36::AID-MRD4>3.0.CO;2-X. PMid:9712315.

Méthot N, Song MS, Sonenberg N. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol. 1996;16(10):5328-34. http://doi.org/10.1128/MCB.16.10.5328. PMid:8816444.

Mourot M, Dufort I, Gravel C, Algriany O, Dieleman S, Sirard MA. The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol Reprod Dev. 2006;73(11):1367-79. http://doi.org/10.1002/mrd.20585. PMid:16894554.

Novoa I, Gallego J, Ferreira PG, Méndez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol. 2010;12(5):447-56. http://doi.org/10.1038/ncb2046. PMid:20364142.

Ozturk S, Yaba-Ucar A, Sozen B, Mutluc D, Demir N. Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos. Reprod Fertil Dev. 2016;28(3):375-83. http://doi.org/10.1071/RD14106. PMid:25034140.

Pilz RB, Casteel DE. Regulation of gene expression by cyclic GMP. Circ Res. 2003;93(11):1034-46. http://doi.org/10.1161/01.RES.0000103311.52853.48. PMid:14645134.

Piqué M, López JM, Foissac S, Guigó R, Méndez R. A Combinatorial Code for CPE-Mediated Translational Control. Cell. 2008;132(3):434-48. http://doi.org/10.1016/j.cell.2007.12.038. PMid:18267074.

Radford H, Meijer HA, De Moor CH. Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta. 2008;1779(4):217-29. http://doi.org/10.1016/j.bbagrm.2008.02.002. PMid:18316045.

Ramos SB. Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem. 2012;287(16):13116-27. http://doi.org/10.1074/jbc.M111.330837. PMid:22367205.

Ramos SBV, Stumpo DJ, Kennington EA, Phillips RSA, Bock CB, Ribeiro-Neto F, Blackshear PJ. The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development. 2004;131(19):4883-93. http://doi.org/10.1242/dev.01336. PMid:15342461.

Richter JD. CPEB: a life in translation. Trends Biochem Sci. 2007;32(6):279-85. http://doi.org/10.1016/j.tibs.2007.04.004. PMid:17481902.

Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2011;2(1):42-57. http://doi.org/10.1002/wrna.28. PMid:21278925.

Sangalli JR, Nociti RP, Del Collado M, Sampaio RV, da Silveira JC, Perecin F, Smith LC, Ross PJ, Meirelles FV. Characterization of histone lysine β-hydroxybutyrylation in bovine tissues, cells, and cumulus-oocyte complexes. Mol Reprod Dev. 2022;89(9):375-98. http://doi.org/10.1002/mrd.23630. PMid:35802460.

Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT 6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J. 2018;37(24):e99333.http://doi.org/10.15252/embj.201899333.

Sha QQ, Zheng W, Wu YQ, Li S, Guo L, Zhang S, Lin G, Ou XH, Fan HY. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat Commun. 2020a;11(1):4917. http://doi.org/10.1038/s41467-020-18680-6. PMid:33004802.

Sha QQ, Zhu YZ, Li S, Jiang Y, Chen L, Sun XH, Shen L, Ou XH, Fan HY. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 2020b;48(2):879-89. http://doi.org/10.1093/nar/gkz1111. PMid:31777931.

Siemer C, Smiljakovic T, Bhojwani M, Leiding C, Kanitz W, Kubelka M, Tomek W. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development. Mol Reprod Dev. 2009;76(12):1208-19. http://doi.org/10.1002/mrd.21096. PMid:19697362.

Soares ACS, Lodde V, Barros RG, Price CA, Luciano AM, Buratini J. Steroid hormones interact with natriuretic peptide C to delay nuclear maturation, to maintain oocyte-cumulus communication and to improve the quality of in vitro-produced embryos in cattle. Reprod Fertil Dev. 2017;29(11):2217-24. http://doi.org/10.1071/RD16320. PMid:28356185.

Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731-45. http://doi.org/10.1016/j.cell.2009.01.042. PMid:19239892.

Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WFC, Blackwell TK, Anderson P. MK2-induced Tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 2004;23(6):1313-24. http://doi.org/10.1038/sj.emboj.7600163. PMid:15014438.

Su YQ, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtif J, Eppig JJ. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol. 2007;302(1):104-17. http://doi.org/10.1016/j.ydbio.2006.09.008. PMid:17022963.

Suk FM, Chang CC, Lin RJ, Lin SY, Liu SC, Jau CF, Liang YC. ZFP36L1 and ZFP36L2 inhibit cell proliferation in a cyclin D-dependent and p53-independent manner. Sci Rep. 2018;8(1):2742. http://doi.org/10.1038/s41598-018-21160-z. PMid:29426877.

Takahashi N, Franciosi F, Daldello EM, Luong XG, Althoff P, Wang X, Conti M. CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging. Nat Commun. 2023;14(1):416. http://doi.org/10.1038/s41467-023-35994-3. PMid:36697412.

Tesfaye D, Ghanem N, Carter F, Fair T, Sirard MA, Hoelker M, Schellander K, Lonergan P. Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro. Reprod Fertil Dev. 2009;21(3):451-61. http://doi.org/10.1071/RD08190. PMid:19261222.

Vogel KU, Bell LS, Galloway A, Ahlforst H, Turner M. The RNA-binding proteins Zfp36l1 and Zfp36l2 enforce the thymic β-selection checkpoint by limiting DNA damage response signaling and cell cycle progression. J Immunol. 2016;197(7):2673-85. http://doi.org/10.4049/jimmunol.1600854. PMid:27566829.

Walser CB, Lipshitz HD. Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev. 2011;21(4):431-43. http://doi.org/10.1016/j.gde.2011.03.003. PMid:21497081.

Wang KT, Wang HH, Wu YY, Su YL, Chian PY, Lin NY, Wang SC, Chang GD, Chang CJ. Functional regulation of Zfp36l1 and Zfp36l2 in response to lipopolysaccharide in mouse RAW264.7 macrophages. J Inflamm (Lond). 2015;12(1):42. http://doi.org/10.1186/s12950-015-0088-x. PMid:26180518.

Weill L, Belloc E, Bava FA, Méndez R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol. 2012;19(6):577-85. http://doi.org/10.1038/nsmb.2311. PMid:22664985.

Wu F, Huang W, Tan Q, Guo Y, Cao Y, Shang J, Ping F, Wang W, Li Y. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1. Cell Death Dis. 2021;12(6):614. http://doi.org/10.1038/s41419-021-03876-5. PMid:34131106.

Xi G, An L, Jia Z, Tan K, Zhang J, Wang Z, Zhang C, Miao K, Wu Z, Tian J. Natriuretic peptide receptor 2 (NPR2) localized in bovine oocyte underlies a unique mechanism for C-type natriuretic peptide (CNP)-induced meiotic arrest. Theriogenology. 2018;106:198-209. http://doi.org/10.1016/j.theriogenology.2017.09.003. PMid:29080478.

Xi G, An L, Wang W, Hao J, Yang Q, Ma L, Lu J, Wang Y, Wang W, Zhao W, Liu J, Yang M, Wang X, Zhang Z, Zhang C, Chu M, Yue Y, Yao F, Zhang M, Tian J. The mRNA-destabilizing protein Tristetraprolin targets “meiosis arrester” Nppc mRNA in mammalian preovulatory follicles. Proc Natl Acad Sci USA. 2021;118(22):e2018345118. http://doi.org/10.1073/pnas.2018345118. PMid:34031239.

Yen SY, Tseng JK, Chuang SM, Chen SE, Ju JC. Expression and activation of mitogen-activated protein kinases in matured porcine oocytes under thermal stress. J Reprod Dev. 2014;60(5):388-94. http://doi.org/10.1262/jrd.2014-004. PMid:25087868.

Yi H, Park J, Ha M, Linn J, Chang H, Kim VN. PABP cooperates with the CCR4-NOT complex to promotye mRNA deadenylation and block precocious decay. Mol Cell. 2018;70(6):1081-1088.e5. http://doi.org/10.1016/j.molcel.2018.05.009. PMid:29932901.

Yu FQ, Han CS, Yang W, Jin X, Hu ZY, Liu YX. Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J Endocrinol. 2005;186(1):85-96. http://doi.org/10.1677/joe.1.05955. PMid:16002539.

Zhang YL, Liu XM, Ji SY, Sha QQ, Zhang J, Fan HY. ERK1/2 activities are dispensable for oocyte growth but are required for meiotic maturation and pronuclear formation in mouse. J Genet Genomics. 2015;42(9):477-85. http://doi.org/10.1016/j.jgg.2015.07.004. PMid:26408092.

Zheng W, Sha QQ, Hu H, Meng F, Zhou Q, Chen X, Zhang S, Gu Y, Yan X, Zhao L, Zong Y, Hu L, Gong F, Lu G, Fan HY, Lin G. Biallelic variants in ZFP36L2 cause female infertility characterised by recurrent preimplantation embryo arrest. J Med Genet. 2022;59(9):850-7. http://doi.org/10.1136/jmedgenet-2021-107933. PMid:34611029.
 


Submitted date:
06/20/2023

Accepted date:
04/29/2024

6687024ba9539566a869ae54 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections