Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0147
Animal Reproduction (AR)
ORIGINAL ARTICLE

Growth performance, reproductive status, and chromosomal instability in triploid Nile tilapias

Williane Ferreira Menezes; Érika Ramos Alvarenga; Rafael Henrique Nóbrega; Luiz Renato França; Marcelo Rezende Luz; Ludson Guimarães Manduca; Franklin Fernando Batista da Costa; Vinícius Monteiro Bezerra; Arthur Francisco de Araújo Fernandes; Eduardo Maldonado Turra

Downloads: 1
Views: 389

Abstract

Reproductive control is one of the biggest challenges in tilapia production and triploidy was developed as an alternative to sterilization. In general, polyploids present chromosomal instability but for triploid Nile tilapia it has yet to be reported. This study evaluated the chromosomal instability from juveniles to adulthood, growth performance and gonadal status of tilapia hatched from eggs submitted or not to heat shock for triploid induction. Nile tilapia oocytes were fertilized (1,476 oocytes), half of the eggs were subjected to a four-minute shock in 41 °C water four minutes after fertilization and the other half were not (Control group). The eggs were incubated (at 27°C) and 160 larvae from the treated group hatched and survived after yolk sac absorption. The determination of ploidy was performed by flow cytometry at 85th (juveniles) and 301st (adults) days of age post yolk sac absorption. At the time of the first cytometry analysis there were 73 surviving juveniles from the treated group, and only 14 were confirmed triploid. However, at the analysis of adult ploidy, one out of 8 surviving adult tilapias from the 14 confirmed triploid juveniles remained triploid. Gonadal histology showed that the non-remaining triploids continued to produce gametes. The growth performance of triploid tilapia was initially superior to that of diploid tilapia during the juvenile phase, but similar in adults. Once the chromosome sets are lost and the tilapias become diploid again, at least in tissues with a high proliferation rate, such as the hematopoietic tissue that was analyzed (and possibly in gonads), all possible advantages of triploids are probably lost. Thus, our results suggest that, due to genomic instabilities, the triploid generation of tilapia has low efficiency.

Keywords

genomic instabilities, heat shock, Oreochromis niloticus, polyploidy, reproduction

References

Allendorf FW, Thorgaard GH. Tetraploidy and the evolution of salmonid fishes. Evolutionary genetics of fishes. Boston: Springer; 1984.

Alvarenga ER, Alves GFDO, Fernandes AFA, Costa GR, da Silva MA, Teixeira EDA, Turra EM. Moderate salinities enhance growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in the biofloc system. Aquacult Res. 2018;49(9):2919-26. http://doi.org/10.1111/are.13728.

Alvarenga ER, Fernandes AFA, Lopes LR, Soares TE, Oliveira Alves GF, Costa FFB, Sales SCM, Lima GK, Turra EM. Attempt to produce a Nile tilapia tetraploid line by heat shock induction. Aquaculture. 2020;529:735647. http://doi.org/10.1016/j.aquaculture.2020.735647.

APHA. Standard methods for the examination of water and wastewater. Washington, D.C.: APHA; 2012. p. 1496.

Arai K, Fujimoto T. Chromosome manipulation techniques and applications to aquaculture. In: Wang H, Francesc P, Chen S, Shen Z, editors. Sex control in Aquaculture. Hoboken: John Wiley & Sons; 2018. p. 137-162.. http://doi.org/10.1002/9781119127291.ch6.

Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture. 2001;197(1-4):205-28. http://doi.org/10.1016/S0044-8486(01)00588-9.

Avnimelech Y. Biofloc technology: a practical guide book. Baton Rouge: The World Aquaculture Society; 2009. p. 182.

Azevedo RO, Alvarenga ER, Fernandes AFA, Silva MA, Alves GFDO, Menezes WF, Turra EM. Use of hCG hormone in the natural and artificial reproduction of Nile tilapia (Oreochromis niloticus). Aquacult Res. 2021;52(12):6380-8. http://doi.org/10.1111/are.15502.

Baroiller JF, D’Cotta H. Sex control in tilapias. In: Wang H, Francesc P, Chen S, Shen Z, editors. Sex control in Aquaculture. Hoboken: John Wiley & Sons; 2018. p. 189-234. http://doi.org/10.1002/9781119127291.ch9.

Bendschneider K, Robinson RJ. A new spectrophotometric method for the determination of nitrite in sea water. Washington: Office of Naval Research; 1952.

Benfey TJ. Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: atlantic salmon (Salmo salar) as a case study. Rev Aquacult. 2016;8(3):264-82. http://doi.org/10.1111/raq.12092.

Benfey TJ. Ovarian development in triploid brook trout (Salvelinus fontinalis). In: Goetz FW, Thomas P, editors. Proceedings of the 5th International Symposium on Reproductive Physiology of Fish. Austin, Texas, USA: Fish Symposium; 1996. p. 357.

Borel F, Lohez OD, Lacroix FB, Margolis RL. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci USA. 2002;99(15):9819-24. http://doi.org/10.1073/pnas.152205299. PMid:12119403.

Brämick U, Puckhaber B, Langholz HJ, Hörstgen-Schwark G. Testing of triploid tilapia (Oreochromis niloticus) under tropical pond conditions. Aquaculture. 1995;137(1-4):343-53. http://doi.org/10.1016/0044-8486(95)01104-8.

Budd AM, Banh QQ, Domingos JA, Jerry DR. Sex control in fish: approaches, challenges and opportunities for aquaculture. J Mar Sci Eng. 2015;3(2):329-55. http://doi.org/10.3390/jmse3020329.

Byamungu N, Darras VM, Kühn ER. Growth of heat-shock induced triploids of blue tilapia, Oreochromis aureus, reared in tanks and in ponds in Eastern Congo: feeding regimes and compensatory growth response of triploid females. Aquaculture. 2001;198(1-2):109-22. http://doi.org/10.1016/S0044-8486(00)00605-0.

Chang SL, Chang CF, Liao IC. Study on the growth performance and gonadal development of triploid tilapia, Oreochromis aureus. In III International Symposium, Tilapia in Aquaculture; Abidjan, Ivory Coast. Manila, Philippines: International Center for Living Aquatic Resources Management (ICLARM); 1991.

Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836-46. http://doi.org/10.1038/nrg1711. PMid:16304599.

Costa e Silva RZ, Alvarenga ER, Matta SV, Alves GFO, Manduca LG, Silva MA, Yoshinaga TT, Fernandes AFA, Turra EM. Masculinization protocol for Nile tilapia (O. niloticus) in Biofloc technology using 17-α-methyltestosterone in the diet. Aquaculture. 2022;547:737470. http://doi.org/10.1016/j.aquaculture.2021.737470.

Cuellar O, Uyeno T. Triploidy in rainbow trout. Cytogenetics. 1972;11(6):508-15. http://doi.org/10.1159/000130217. PMid:4658179.

Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 2006;257(1-4):346-58. http://doi.org/10.1016/j.aquaculture.2006.03.019.

El-Sayed AFM. Tilapia culture in salt water: environmental requirements, nutritional implications and economic potentials. Avances en Nutricion Acuicola. 2006;1(1):96-106.

Ewing RA, Scalet CG, Evenson DP. Flow cytometric identification of larval triploid walleyes. Prog Fish-Cult. 1991;53(3):177-80. http://doi.org/10.1577/1548-8640(1991)053<0177:FCIOLT>2.3.CO;2.

Fraser TW, Fjelldal PG, Hansen T, Mayer I. Welfare considerations of triploid fish. Rev Fish Sci. 2012;20(4):192-211. http://doi.org/10.1080/10641262.2012.704598.

Glover KA, Madhun AS, Dahle G, Sørvik AG, Wennevik V, Skaala Ø, Fjelldal PG. The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet. 2015;16(1):37. http://doi.org/10.1186/s12863-015-0193-0. PMid:25884873.

Goudie CA, Simco BA, Davis KB, Liu Q. Production of gynogenetic and polyploidy catfish by pressure-induced chromosome set manipulation. Aquaculture. 1995;133(3-4):185-98. http://doi.org/10.1016/0044-8486(94)00367-W.

Hanada H, Takeda K, Tagami T, Nirasawa K, Akagi S, Adachi N, Takahashi S, Izaike Y, Iwamoto M, Fuchimoto DI, Miyashita N, Kubo M, Onishi A, King WA. Chromosomal instability in the cattle clones derived by somatic cell nuclear‐transfer. Mol Reprod Dev. 2005;71(1):36-44. http://doi.org/10.1002/mrd.20283. PMid:15736125.

Herbst EC. Induction of tetraploidy in zebra fish Danio rerio and nile tilapia Oreochromis niloticus [thesis]. Charlotte, NC: University of North Carolina; 2002.

Hussain MG, Chatterji A, McAndrew BJ, Johnstone R. Triploidy induction in Nile tilapia, Oreochromis niloticus L. using pressure, heat and cold shocks. Theor Appl Genet. 1991;81(1):6-12. http://doi.org/10.1007/BF00226105. PMid:24221152.

Johnstone R, McLay HA, Walsingham MV. Production and performance of triploid Atlantic salmon in Scotland. Can J Fish Aquat. 1991;1789:15-36.

Jørgensen KM, Wennevik V, Eide Sørvik AG, Unneland L, Prusov S, Ayllon F, Glover KA. Investigating the frequency of triploid Atlantic salmon in wild Norwegian and Russian populations. BMC Genet. 2018;19(1):90. http://doi.org/10.1186/s12863-018-0676-x. PMid:30285613.

Kubitza F. Tecnologia e planejamento na produção comercial de tilápias. Jundiai: Degaspari Publisher; 2000.

Leclercq E, Taylor JF, Fison D, Fjelldal PG, Diez-Padrisa M, Hansen T, Migaud H. Comparative seawater performance and deformity prevalence in out-of-season diploid and triploid Atlantic salmon (Salmo salar) post-smolts. Comp Biochem Physiol A Mol Integr Physiol. 2011;158(1):116-25. http://doi.org/10.1016/j.cbpa.2010.09.018. PMid:20883809.

Mataveli M, de Moraes GV, Streit DP Jr, Mendez LDV, Sakaguti ES, Toninato JC, Barbosa RC, Merlini L. Avaliação da qualidade do sêmen de tilápia-do-Nilo (Oreochromis niloticus), linhagem Chitralada, suplementada com diferentes concentrações de vitamina C. Bol Inst Pesca. 2018;33(1):1-7.

Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res. 1990;231(2):177-86. http://doi.org/10.1016/0027-5107(90)90024-X. PMid:2200955.

Monsees H, Klatt L, Kloas W, Wuertz S. Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus L.) in recirculating aquaculture systems. Aquacult Res. 2017;48(7):3482-92. http://doi.org/10.1111/are.13174.

Monteiro MIC, Ferreira FN, De Oliveira NMM, Avila AK. Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Anal Chim Acta. 2003;477(1):125-9. http://doi.org/10.1016/S0003-2670(02)01395-8.

Nascimento NF, Pereira-Santos M, Piva LH, Manzini B, Fujimoto T, Senhorini JA, Yasui GS, Nakaghi LSO. Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae. Aquaculture. 2017a;471:163-71. http://doi.org/10.1016/j.aquaculture.2017.01.007.

Nascimento NF, Siqueira-Silva DH, Pereira-Santos M, Fujimoto T, Senhorini JA, Nakaghi LSO, Yasui GS. Stereological analysis of gonads from diploid and triploid fish yellowtail tetra Astyanax altiparanae (Garutti and Britski) in laboratory conditions. Zygote. 2017b;25(4):537-44. http://doi.org/10.1017/S0967199417000399. PMid:28766472.

Ochatt SJ. Flow cytometry (ploidy determination, cell cycle analysis, DNA content per nucleus). Medicago Truncatula. [serial on the Internet]. 2006;1-13. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=095360d31b3a61ed2a3fe8b2d15a941bed09c4e1

Pechsiri J, Yakupitiyage A. A comparative study of growth and feed utilization efficiency of sex‐reversed diploid and triploid Nile tilapia, Oreochromis niloticus L. Aquacult Res. 2005;36(1):45-51. http://doi.org/10.1111/j.1365-2109.2004.01182.x.

Piferrer F, Beaumont A, Falguière JC, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293(3-4):125-56. http://doi.org/10.1016/j.aquaculture.2009.04.036.

Pradeep PJ, Srijaya TC, Bahuleyan A, Papini A. Can sterility through triploidy induction make an impact on Tilapia industry? Int J Aquat Sci. 2012;3(2):89-96.

Pradeep PJ, Srijaya TC, Hassan A, Chatterji AK, Raghavan R, Withyachumnarnkul B, Jeffs A. Growth performance of triploid red tilapia reared under laboratory conditions. J Appl Aquacult. 2013;25(2):176-89. http://doi.org/10.1080/10454438.2013.793131.

Pradeep PJ, Srijaya TC, Hassan A, Chatterji AK, Withyachumnarnkul B, Jeffs A. Optimal conditions for cold-shock induction of triploidy in red tilapia. Aquacult Int. 2014;22(3):1163-74. http://doi.org/10.1007/s10499-013-9736-4.

Pradeep PJ, Srijaya TC, Shahreeza MS, Mithun S, Anuar H, Anil A. Induction of triploidy in red tilapia, Oreochromis mossambicus (Peters, 1852) × Oreochromis niloticus (Linnaeus, 1758) by heat shock treatment under laboratory conditions. J Coast Environ. 2010;1(1):91-102.

R Core Team. R: A language and environment for statistical computing [Internet] Vienna: R Foundation for Statistical Computing; 2020 [cited 2023 Nov 10]. Available from: https://www.R-project.org/

Ranzani-Paiva MJTR, de Pádua SB, Tavares-Dias M, Egami MI. Métodos para análise hematológica em peixes. Maringá: EDUEM; 2013. p. 135. http://doi.org/10.7476/9788576286530.

Reshmi SC, Saunders WS, Kudla DM, Ragin CR, Gollin SM. Chromosomal instability and marker chromosome evolution in oral squamous cell carcinoma. Genes Chromosomes Cancer. 2004;41(1):38-46. http://doi.org/10.1002/gcc.20064. PMid:15236315.

Silva AG, Graves HA, Guffei A, Ricca TI, Mortara RA, Jasiulionis MG, Mai S. Telomere-centromere-driven genomic instability contributes to karyotype evolution in a mouse model of melanoma. Neoplasia. 2010;12(1):11-9. http://doi.org/10.1593/neo.91004. PMid:20072649.

Sousa JT, Allen SK Jr, Baker H, Matt JL. Aneuploid progeny of the American oyster, Crassostrea virginica, produced by tetraploid× diploid crosses: another example of chromosome instability in polyploid oysters. Genome. 2016;59(5):327-38. http://doi.org/10.1139/gen-2015-0222. PMid:27070368.

Taylor JF, Bozzolla P, Frenzl B, Matthew C, Hunter D, Migaud H. Triploid Atlantic salmon growth is negatively affected by communal ploidy rearing during seawater grow-out in tanks. Aquaculture. 2014;432:163-74. http://doi.org/10.1016/j.aquaculture.2014.05.014.

Taylor JF, Leclercq E, Preston AC, Guy D, Migaud H. Parr-smolt transformation in out-of-season triploid Atlantic salmon (Salmo salar L.). Aquaculture. 2012;362:255-63. http://doi.org/10.1016/j.aquaculture.2010.12.028.

Taylor JF, Preston AC, Guy D, Migaud H. Ploidy effects on hatchery survival, deformities, and performance in Atlantic salmon (Salmo salar). Aquaculture. 2011;315(1-2):61-8. http://doi.org/10.1016/j.aquaculture.2010.11.029.

Taylor JF, Sambraus F, Mota-Velasco J, Guy DR, Hamilton A, Hunter D, Migaud H. Ploidy and family effects on Atlantic salmon (Salmo salar) growth, deformity and harvest quality during a full commercial production cycle. Aquaculture. 2013;410:41-50. http://doi.org/10.1016/j.aquaculture.2013.06.004.

Taylor JF, Waagbø R, Diez‐Padrisa M, Campbell P, Walton J, Hunter D, Migaud H. Adult triploid Atlantic salmon (Salmo salar) have higher dietary histidine requirements to prevent cataract development in seawater. Aquacult Nutr. 2015;21(1):18-32. http://doi.org/10.1111/anu.12130.

Teletchea F, Fontaine P. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish. 2014;15(2):181-95. http://doi.org/10.1111/faf.12006.

Teplitz RL, Joyce JE, Doroshov SI, Min BH. A preliminary ploidy analysis of diploid and triploid salmonids. Can J Fish Aquat Sci. 1994;51(S1):38-41. http://doi.org/10.1139/f94-293.

Thorgaard GH, Gall GA. Adult triploids in a rainbow trout family. Genetics. 1979;93(4):961-73. http://doi.org/10.1093/genetics/93.4.961. PMid:546676.

UNESCO. Chemical methods for use in marine environmental monitoring. In: Intergovernmental Oceanographic Commission, editor. Manual and Guides 12. Paris: UNESCO; 1983.

Wang HP, Shen ZG. Sex control in aquaculture: concept to practice. In: Wang H, Francesc P, Chen S, Shen Z, editors. Sex control in Aquaculture. Hoboken: John Wiley & Sons; 2018. p. 1-34. http://doi.org/10.1002/9781119127291.ch1.

Wedemeyer G. Physiology of fish in intensive culture systems. In: Wang H, Francesc P, Chen S, Shen Z, editors. Sex control in Aquaculture. Hoboken: John Wiley & Sons; 1996.

Wong TT, Zohar Y. Production of reproductively sterile fish: A mini-review of germ cell elimination technologies. Gen Comp Endocrinol. 2015;221:3-8. http://doi.org/10.1016/j.ygcen.2014.12.012. PMid:25583581.

Zhang Q, Arai K. Flow cytometry for DNA contents of somatic cells and spermatozoa in the progeny of natural tetraploid loach. Fish Sci. 1996;62(6):870-7. http://doi.org/10.2331/fishsci.62.870.

Zhang Q, Yu H, Howe A, Chandler W, Allen SK Jr. Cytogenetic mechanism for reversion of triploids to heteroploid mosaics in Crassostrea gigas (Thunberg) and Crassostrea ariakensis. Aquacult Res. 2010;41(11):1658-67. http://doi.org/10.1111/j.1365-2109.2010.02541.x.

Zhang Z, Wang X, Zhang Q, Allen S Jr. Cytogenetic mechanism for the aneuploidy and mosaicism found in tetraploid Pacific oyster Crassostrea gigas (Thunberg). J Ocean Univ China. 2014;13(1):125-31. http://doi.org/10.1007/s11802-014-2318-x.
 


Submitted date:
11/10/2023

Accepted date:
03/18/2024

664b8b25a953952b6b486f45 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections