Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0027
Animal Reproduction (AR)
ORIGINAL ARTICLE

Withanolide derivatives: natural compounds with anticancer potential offer low toxicity to fertility and ovarian follicles in mice

Gaby Judith Quispe Palomino; Homero Ygnacio Celiz; Francisco Denilson Rodrigues Gomes; Gildas Mbemya Tetaping; Marco Aurélio Schiavo Novaes; Késya Amanda Dantas Rocha; Ramon da Silva Raposo; Rebeca Magalhães Pedrosa Rocha; Ana Beatriz Graça Duarte; Otilia Deusdênia Loiola Pessoa; José Ricardo Figueiredo; Naiza Arcângela Ribeiro de Sá; Ana Paula Ribeiro Rodrigues

Downloads: 1
Views: 188

Abstract

Anticancer therapy often leads to premature ovarian insufficiency (POI) and infertility due to the extreme sensitivity of the ovarian follicle reserve to the effects of chemotherapy. Withanolides are known for their cytotoxic effect on cancer cells and low cytotoxicity on non-malignant or healthy cells. Therefore, this study aimed to investigate the in vivo effects of three withanolides derivatives: 27-dehydroxy-24,25-epoxywithaferin A (WT1), 27-dehydroxywithaferin A (WT2), and withaferin A (WTA) on fertility, and the ovarian preantral follicles of young female mice. To achieve this, mice received 7 intraperitoneal doses of WT1, WT2, or WTA at a concentration of 2 mg/kg (Experiment I) and 5 or 10 mg/kg (Experiment II) over 15 alternate days. In experiment I, two days after administration of the last dose, half of the mice were mated to evaluate the effects of withanolides on fertility. The other half of the mice, as well as all mice from experiment II, were sacrificed for histological, inflammation, senescence, and immunohistochemical analyses of the follicles present in the ovary. Regardless of the administered withanolide, the concentration of 2 mg/kg did not show toxicity on the follicular morphology, ovarian function, or fertility of the mice. However, at concentrations of 5 and 10 mg/kg, the three derivatives (WT1, WT2, and WTA) increased follicular activation, cell proliferation, and ovarian senescence without affecting inflammatory cells. Furthermore, at a concentration of 10 mg/kg, the three withanolides showed intensified toxic effects, leading to DNA damage as evidenced by the labeling of γH2AX, activated Caspase 3, and TUNEL. We conclude that the cytotoxic effect of the tested withanolide derivatives (WT1, WT2, and WTA) in the concentration of 2 mg/kg did not show toxicity on the ovary. However, in higher concentrations, such as 10 mg/kg, toxic effects are potentiated, causing DNA damage.

Keywords

chemotherapy, cytotoxicity, reproductive function, apoptosis, infertility

References

Abdeljebbar LH, Benjouad A, Morjani H, Merghoub N, El Haddar S, Humam M, Christen P, Hostettmann K, Bekkouche K, Amzazi S. Antiproliferative effects of withanolides from Withania adpressa. Therapie. 2009;64(2):121-7. http://doi.org/10.2515/therapie/2009015. PMid:19664406.

Alves PA, Dantas Rocha KA, Bezerra LL, Ayala AP, Vieira Monteiro NK, Pessoa ODL. Withanolides of Athenaea velutina with potential inhibitory properties against SARS coronavirus main protease (mpro): molecular modeling studies. J Biomol Struct Dyn. 2023;41(21):12267-75. http://doi.org/10.1080/07391102.2023.2167863. PMid:36690603.

Anderson RA, Themmen AP, Al-Qahtani A, Groome NP, Cameron DA. The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum Reprod. 2006;21(10):2583-92. http://doi.org/10.1093/humrep/del201. PMid:16820385.

Ataya K, Rao LV, Lawrence E, Kimmel R. Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod. 1995;52(2):365-72. http://doi.org/10.1095/biolreprod52.2.365. PMid:7711205.

Atteeq M. Evaluating anticancer properties of Withaferin A: a potent phytochemical. Front Pharmacol. 2022;13:975320. http://doi.org/10.3389/fphar.2022.975320. PMid:36339589.

Ayhan S, Hancerliogullari N, Guney G, Gozukucuk M, Caydere M, Guney SS, Tokmak A, Ustun Y. Does the addition of metformin to carboplatin treatment decreases ovarian reserve damage associated with carboplatin usage? J Ovarian Res. 2023;16(1):184. http://doi.org/10.1186/s13048-023-01259-2. PMid:37660125.

Bedoschi G, Navarro PA, Oktay K. Chemotherapy-induced damage to ovary: mechanisms and clinical impact. Future Oncol. 2016;12(20):2333-44. http://doi.org/10.2217/fon-2016-0176. PMid:27402553.

Bhattacharya A, Ramanathan M, Ghosal S, Bhattacharya SK. Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats. Phytother Res. 2000;14(7):568-70. http://doi.org/10.1002/1099-1573(200011)14:7<568::AID-PTR663>3.0.CO;2-Q. PMid:11054855.

Calanni-Pileri M, Weitzel JM, Langhammer M, Wytrwat E, Michaelis M. Altered insulin, leptin and ghrelin hormone levels and atypical estrous cycle lengths in two highly fertile mouse lines. Reprod Domest Anim. 2022;57(6):577-86. http://doi.org/10.1111/rda.14097 PMid:35152512.

Chon SJ, Umair Z, Yoon MS. Premature ovarian insufficiency: past, present, and future. Front Cell Dev Biol. 2021;9:672890. http://doi.org/10.3389/fcell.2021.672890. PMid:34041247.

Dantas Rocha KA, Paulo TF, Ayala AP, Sampaio VS, Nunes PIG, Santaos FA, Canuto KM, Silveira ER, Pessoa ODL. Anti-inflammatory withajardins from the leaves of Athenaea velutina. Phytochemistry. 2022;203:113338. http://doi.org/10.1016/j.phytochem.2022.113338. PMid:35948140.

Fong MY, Jin S, Rane M, Singh RK, Gupta R, Kakar SS. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One. 2012;7(7):e42265. http://doi.org/10.1371/journal.pone.0042265. PMid:22860102.

Gown AM, Willingham MC. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem. 2002;50(4):449-54. http://doi.org/10.1177/002215540205000401. PMid:11897797.

Guerreiro DD, de Lima LF, de Sá NAR, Tetaping GM, Alves BG, Lobo CH, Deusdênia Loiola O, Smitz J, de Figueiredo JR, Ribeiro Rodrigues AP. In vitro study of Withanolide D toxicity on goat preantral follicles and its effects on the cell cycle. Reprod Toxicol. 2019;84:18-25. http://doi.org/10.1016/j.reprotox.2018.12.007. PMid:30579997.

Hao X, Anastácio A, Liu K, Rodriguez-Wallberg KA. Ovarian follicle depletion induced by chemotherapy and the investigational stages of potential fertility-protective treatments: a review. Int J Mol Sci. 2019;20(19):4720. http://doi.org/10.3390/ijms20194720. PMid:31548505.

Hardy K, Mora JM, Dunlop C, Carzaniga R, Franks S, Fenwick MA. Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary. J Cell Sci. 2018;131(17):jcs218123. http://doi.org/10.1242/jcs.218123. PMid:30111581.

Kakar SS, Jala VR, Fong MY. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun. 2012;423(4):819-25. http://doi.org/10.1016/j.bbrc.2012.06.047. PMid:22713472.

Kakar SS, Parte S, Carter K, Joshua IG, Worth C, Rameshwar P, Ratajczak MZ. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget. 2017;8(43):74494-505. http://doi.org/10.18632/oncotarget.20170. PMid:29088802.

Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and its evolving role in the management of ovarian cancer. BioMed Res Int. 2015;2015:413076. http://doi.org/10.1155/2015/413076. PMid:26137480.

Kashi O, Meirow D. Overactivation or apoptosis: which mechanisms affect chemotherapy-induced ovarian reserve depletion? Int J Mol Sci. 2023;24(22):16291. http://doi.org/10.3390/ijms242216291. PMid:38003481.

Kashi O, Roness H, Spector I, Derech-Haim S, Meirow D. Dual suppression of follicle activation pathways completely prevents the cyclophosphamide-induced loss of ovarian reserve. Hum Reprod. 2023;38(6):1086-98. http://doi.org/10.1093/humrep/dead064. PMid:37015102.

Kim YY, Kim WO, Liu HC, Rosenwaks Z, Kim JW, Ku SY. Effects of paclitaxel and cisplatin on in vitro ovarian follicle development. Arch Med Sci. 2019;15(6):1510-9. http://doi.org/10.5114/aoms.2019.81730. PMid:31749880.

Kumar S, Seal CJ, Howes MJ, Kite GC, Okello EJ. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res. 2010;24(10):1567-74. http://doi.org/10.1002/ptr.3261. PMid:20680931.

Letourneau JM, Smith JF, Ebbel EE, Craig A, Katz PP, Cedars MI, Rosen MP. Racial, socioeconomic, and demographic disparities in access to fertility preservation in young women diagnosed with cancer. Cancer. 2012;118(18):4579-88. http://doi.org/10.1002/cncr.26649. PMid:22451228.

Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018;19(11):3533. http://doi.org/10.3390/ijms19113533. PMid:30423952.

Lima M, Sá NARD, Novaes MAS, Palomino GJQ, Tetaping GM, Fernandes CCL, Garcia DN, Rondina D, Schneider A, Figueiredo JR, Duarte ABG, Rodrigues APR. High accumulation of lipofuscin is observed in preantral follicles of adult goat ovaries: is it a senescence sign? Small Rumin Res. 2023;224:106985. http://doi.org/10.1016/j.smallrumres.2023.106985.

Loro LL, Vintermyr OK, Liavaag PG, Jonsson R, Johannessen AC. Oral squamous cell carcinoma is associated with decreased bcl-2/bax expression ratio and increased apoptosis. Hum Pathol. 1999;30(9):1097-105. http://doi.org/10.1016/S0046-8177(99)90229-0. PMid:10492046.

Mauri D, Gazouli I, Zarkavelis G, Papadaki A, Mavroeidis L, Gkoura S, Ntellas P, Amylidi AL, Tsali L, Kampletsas E. Chemotherapy associated ovarian failure. Front Endocrinol. 2020;11:572388. http://doi.org/10.3389/fendo.2020.572388. PMid:33363515.

Meirow D, Biederman H, Anderson RA, Wallace WH. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol. 2010;53(4):727-39. http://doi.org/10.1097/GRF.0b013e3181f96b54. PMid:21048440.

Nagy Z, Cheung BB, Tsang W, Tan O, Herath M, Ciampa OC, Shadma F, Carter DR, Marshall GM. Withaferin A activates TRIM16 for its anti-cancer activity in melanoma. Sci Rep. 2020;10(1):19724. http://doi.org/10.1038/s41598-020-76722-x. PMid:33184347.

Nguyen QN, Zerafa N, Liew SH, Findlay JK, Hickey M, Hutt KJ. Cisplatin- and cyclophosphamide-induced primordial follicle depletion is caused by direct damage to oocytes. Mol Hum Reprod. 2019;25(8):433-44. http://doi.org/10.1093/molehr/gaz020. PMid:30953068.

Palomino GJQ, Sá NAR, Guerreiro DD, Gomes FDR, Silva RF, Lopes EPF, Paes VM, Gataí PHS, Alves BG, Pessoa ODL, Figueiredo JR, Rocha RMP, Rodrigues APR. Induced-damages on preantral follicles by withanolide D, a potent chemotherapy candidate are not attenuated by melatonin. Reprod Toxicol. 2021;104:125-33. http://doi.org/10.1016/j.reprotox.2021.07.005. PMid:34274432.

Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A. Withania somnifera (L.) Dunal (Ashwagandha): a comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother. 2021;143:112175. http://doi.org/10.1016/j.biopha.2021.112175. PMid:34649336.

Rasool M, Varalakshmi P. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: an in vivo and in vitro study. Vascul Pharmacol. 2006;44(6):406-10. http://doi.org/10.1016/j.vph.2006.01.015. PMid:16713367.

Rayan A, Raiyn J, Falah M. Nature is the best source of anticancer drugs: indexing natural products for their anticancer bioactivity. PLoS One. 2017;12(11):e0187925. http://doi.org/10.1371/journal.pone.0187925. PMid:29121120.

Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858-68. http://doi.org/10.1074/jbc.273.10.5858. PMid:9488723.

Samadi AK. Potential anticancer properties and mechanisms of action of withanolides. Enzymes. 2015;37:73-94. http://doi.org/10.1016/bs.enz.2015.05.002. PMid:26298456.

Santos JM, Menezes VG, Barberino RS, Macedo TJ, Lins TL, Gouveia BB, Barros VRP, Santos LP, Gonçalves RJS, Matos MHT. Immunohistochemical localization of fibroblast growth factor-2 in the sheep ovary and its effects on pre-antral follicle apoptosis and development in vitro. Reprod Domest Anim. 2014;49(3):522-8. http://doi.org/10.1111/rda.12322 PMid:24750547.

Sati P, Sharma E, Dhyani P, Attri DC, Rana R, Kiyekbayeva L, Büsselberg D, Samuel SM, Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur J Med Res. 2024;29(1):90. http://doi.org/10.1186/s40001-024-01657-2. PMid:38291541.

Scalercio SR, Brito AB, Domingues SF, Santos RR, Amorim CA. Immunolocalization of growth, inhibitory, and proliferative factors involved in initial ovarian folliculogenesis from adult common squirrel monkey (Saimiri collinsi). Reprod Sci. 2015;22(1):68-74. http://doi.org/10.1177/1933719114532842. PMid:24784715.

Schneider A, Matkovich SJ, Saccon T, Victoria B, Spinel L, Lavasani M, Bartke A, Golusinski P, Masternak MM. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol. 2017;439:328-36. http://doi.org/10.1016/j.mce.2016.09.019. PMid:27663076.

Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311-22. http://doi.org/10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 PMid:10653597.

Sellami I, Beau I, Sonigo C. Chemotherapy and female fertility. Ann Endocrinol. 2023;84(3):382-7. http://doi.org/10.1016/j.ando.2023.03.013. PMid:36967045.

Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459-70. http://doi.org/10.1016/S1097-2765(02)00482-3. PMid:11931755.

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics. CA Cancer J Clin. 2024;74(1):12-49. http://doi.org/10.3322/caac.21820. PMid:38230766.

Sonigo C, Beau I, Binart N, Grynberg M. The impact of chemotherapy on the ovaries: molecular aspects and the prevention of ovarian damage. Int J Mol Sci. 2019a;20(21):5342. http://doi.org/10.3390/ijms20215342. PMid:31717833.

Sonigo C, Beau I, Grynberg M, Binart N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice. FASEB J. 2019b;33(1):1278-87. http://doi.org/10.1096/fj.201801089R. PMid:30113879.

Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25(6):673-93. http://doi.org/10.1093/humupd/dmz027. PMid:31600388.

Stan SD, Hahm ER, Warin R, Singh SV. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res. 2008;68(18):7661-9. http://doi.org/10.1158/0008-5472.CAN-08-1510. PMid:18794155.

Straughn AR, Kakar SS. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res. 2019;12(1):115. http://doi.org/10.1186/s13048-019-0586-1. PMid:31767036.

Svetlova MP, Solovjeva LV, Tomilin NV. Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks. Mutat Res. 2010;685(1-2):54-60. http://doi.org/10.1016/j.mrfmmm.2009.08.001. PMid:19682466.

Tarumi W, Suzuki N, Takahashi N, Kobayashi Y, Kiguchi K, Sato K, Ishizuka B. Ovarian toxicity of paclitaxel and effect on fertility in the rat. J Obstet Gynaecol Res. 2009;35(3):414-20. http://doi.org/10.1111/j.1447-0756.2009.01023.x. PMid:19527376.

te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62(6):1876-83. PMid:11912168.

Uhlenhaut NH, Treier M. Forkhead transcription factors in ovarian function. Reproduction. 2011;142(4):489-95. http://doi.org/10.1530/REP-11-0092. PMid:21810859.

WalyEldeen AA, Sabet S, El-Shorbagy HM, Abdelhamid IA, Ibrahim SA. Chalcones: promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact. 2023;369:110297. http://doi.org/10.1016/j.cbi.2022.110297. PMid:36496109.

Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, Li Y, Gunatilaka AA, Zhan CG, Sun D. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol. 2010;79(4):542-51. http://doi.org/10.1016/j.bcp.2009.09.017. PMid:19769945.

Zhang X, Mukerji R, Samadi AK, Cohen MS. Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med. 2011;11(1):84. http://doi.org/10.1186/1472-6882-11-84. PMid:21978374.

Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact. 2023;384:110698. http://doi.org/10.1016/j.cbi.2023.110698. PMid:37690745.

Zhao M, Wang B, Zhang C, Su Z, Guo B, Zhao Y, Zheng R. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease. Cell Death Differ. 2021;28(8):2517-35. http://doi.org/10.1038/s41418-021-00767-2. PMid:33762743.

Zhu F, Gao J, Zeng F, Lai Y, Ruan X, Deng G. Hyperoside protects against cyclophosphamide induced ovarian damage and reduced fertility by suppressing HIF-1α/BNIP3-mediated autophagy. Biomed Pharmacother. 2022;156:113743. http://doi.org/10.1016/j.biopha.2022.113743. PMid:36252358.

Zraik IM, Heß-Busch Y. Management von nebenwirkungen der chemotherapie und deren langzeitfolgen [Management of chemotherapy side effects and their long-term sequelae]. Urologe A. 2021;60(7):862-71. http://doi.org/10.1007/s00120-021-01569-7. PMid:34185118.
 


Submitted date:
03/17/2024

Accepted date:
07/30/2024

671299a4a953951d7d14c072 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections