Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0031
Animal Reproduction (AR)
Thematic Section: 37th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Recent advancements to increase success in assisted reproductive technologies in cattle

Marja Mikkola; Karolien Leen Jan Desmet; Elisabeth Kommisrud; Michael A. Riegler

Downloads: 1
Views: 265

Abstract

Assisted reproductive technologies (ART) are fundamental for cattle breeding and sustainable food production. Together with genomic selection, these technologies contribute to reducing the generation interval and accelerating genetic progress. In this paper, we discuss advancements in technologies used in the fertility evaluation of breeding animals, and the collection, processing, and preservation of the gametes. It is of utmost importance for the breeding industry to select dams and sires of the next generation as young as possible, as is the efficient and timely collection of gametes. There is a need for reliable and easily applicable methods to evaluate sexual maturity and fertility. Although gametes processing and preservation have been improved in recent decades, challenges are still encountered. The targeted use of sexed semen and beef semen has obliterated the production of surplus replacement heifers and bull calves from dairy breeds, markedly improving animal welfare and ethical considerations in production practices. Parallel with new technologies, many well-established technologies remain relevant, although with evolving applications. In vitro production (IVP) has become the predominant method of embryo production. Although fundamental improvements in IVP procedures have been established, the quality of IVP embryos remains inferior to their in vivo counterparts. Improvements to facilitate oocyte maturation and development of new culture systems, e.g. microfluidics, are presented in this paper. New non-invasive and objective tools are needed to select embryos for transfer. Cryopreservation of semen and embryos plays a pivotal role in the distribution of genetics, and we discuss the challenges and opportunities in this field. Finally, machine learning (ML) is gaining ground in agriculture and ART. This paper delves into the utilization of emerging technologies in ART, along with the current status, key challenges, and future prospects of ML in both research and practical applications within ART.

Keywords

embryo technology, semen quality, fertility, breeding, machine learning

References

Abbasi A, Miahi E, Mirroshandel SA. Effect of deep transfer and multi-task learning on sperm abnormality detection. Comput Biol Med. 2021;128:104121. http://doi.org/10.1016/j.compbiomed.2020.104121. PMid:33246195.

Afridi H, Ullah M, Nordbø Ø, Cheikh FA. Deep learning based udder classification for cattle traits analysis. Image. 2022;390:2.

Agarwal A, Henkel R, Huang C-C, Lee M-S. Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia. 2019;51(11):e13440. http://doi.org/10.1111/and.13440. PMid:31583732.

Agostini Losano JD, Souders CL, Martyniuk CJ, Daigneault BW. Characterization of bioenergetic and kinematic plasticity of bovine sperm reveals novel and dynamic temporal traits. Reproduction. 2023;166(2):135-47. http://doi.org/10.1530/REP-23-0095. PMid:37252841.

Agriculture and Horticulture Development Board – AHDB. Survey reveals significant increase in sexed dairy semen [Internet]. 2023 [cited 2024 Mar 13]. Available from: https://ahdb.org.uk/news/survey-reveals-a-significant-increase-in-sexed-dairy-semen

Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith LC. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. 2020;10(12):2196. http://doi.org/10.3390/ani10122196. PMid:33255250.

Albuz F, Sasseville M, Lane M, Armstrong D, Thompson J, Gilchrist R. Simulated physiological oocyte maturation (spom): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod. 2010;25(12):2999-3011. http://doi.org/10.1093/humrep/deq246. PMid:20870682.

Alias AB, Huang H-Y, Yao D-J. A review on microfluidics: an aid to assisted reproductive technology. Molecules. 2021;26(14):4354. http://doi.org/10.3390/molecules26144354. PMid:34299629.

Alm-Kristiansen A, Dalen G, Klinkenberg G, Bekk L, Thorkildsen L, Waterhouse K, Kommisrud E. Reproductive performance of immobilized cryopreserved bovine semen used for timed artificial insemination. Reprod Domest Anim. 2017;52(6):1019-24. http://doi.org/10.1111/rda.13017. PMid:28691353.

Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014;81(1):5-17.e1. http://doi.org/10.1016/j.theriogenology.2013.09.004. PMid:24274405.

Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S. The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 2016;17(4):745-56. http://doi.org/10.1007/s10561-016-9566-5. PMid:27342905.

Armstrong S, Bhide P, Jordan V, Pacey A, Marjoribanks J, Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev. 2019;5(5):CD011320. http://doi.org/10.1002/14651858.CD011320.pub4. PMid:31140578.

Arshad U, Sagheer M, Gonzalez-Silvestry FB, Hassan M, Sosa F. Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing: a systematic meta-analysis. Cryobiology. 2021;101:1-11. http://doi.org/10.1016/j.cryobiol.2021.06.007. PMid:34186088.

Aussillous P, Quéré D. Liquid marbles. Nature. 2001;411(6840):924-7. http://doi.org/10.1038/35082026. PMid:11418851.

Baldassarre H. Laparoscopic ovum pick-up followed by in vitro embryo production and transfer in assisted breeding programs for ruminants. Animals. 2021;11(1):216. http://doi.org/10.3390/ani11010216. PMid:33477298.

Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, García S, Gil-López S, Molina D, Benjamins R, Chatila R, Herrera F. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible ai. Inf Fusion. 2020;58:82-115. http://doi.org/10.1016/j.inffus.2019.12.012.

Barth A. The use of bull breeding soundness evaluation to identify subfertile and infertile bulls. Animal. 2018;12(s1):s158-64. http://doi.org/10.1017/S1751731118000538. PMid:29560847.

Baruselli PS, Abreu LA, Catussi BLC, Oliveira ACS, Rebeis LM, Gricio EA, Albertini S, Sales JNS, Rodrigues CA. Use of new recombinant proteins for ovarian stimulation in ruminants. Anim Reprod. 2023;20(2):e20230092. http://doi.org/10.1590/1984-3143-ar2023-0092. PMid:37720727.

Batista E, Macedo G, Sala R, Ortolan MDDV, Sá MF Fo, Del Valle TA, Jesus EF, Lopes R, Rennó FP, Baruselli PS. Plasma antimullerian hormone as a predictor of ovarian antral follicular population in Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Reprod Domest Anim. 2014;49(3):448-52. http://doi.org/10.1111/rda.12304. PMid:24689827.

Berg HF, Kommisrud E, Bai G, Gaustad ER, Klinkenberg G, Standerholen FB, Thorkildsen LT, Waterhouse KE, Ropstad E, Heringstad B, Alm-Kristiansen AH. Comparison of sperm adenosine triphosphate content, motility and fertility of immobilized and conventionally cryopreserved norwegian red bull semen. Theriogenology. 2018;121:181-7. http://doi.org/10.1016/j.theriogenology.2018.08.016. PMid:30165307.

Berg HF, Spång HCL, Heringstad B, Ropstad E, Alm-Kristiansen AH, Kommisrud E. Studies of gel with immobilized semen by intrauterine endoscopy post-artificial insemination. Reprod Domest Anim. 2020;55(3):401-4. http://doi.org/10.1111/rda.13630. PMid:31916296.

Berry D. Invited review: beef-on-dairy. The generation of crossbred beef× dairy cattle. J Dairy Sci. 2021;104(4):3789-819. http://doi.org/10.3168/jds.2020-19519. PMid:33663845.

Besenfelder U, Brem G, Havlicek V. Environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):s103-12. http://doi.org/10.1017/S175173111900315X. PMid:32024564.

Blacker TS, Duchen MR. Investigating mitochondrial redox state using nadh and nadph autofluorescence. Free Radic Biol Med. 2016;100:53-65. http://doi.org/10.1016/j.freeradbiomed.2016.08.010. PMid:27519271.

Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard M-A. Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod. 2002;66(1):38-43. http://doi.org/10.1095/biolreprod66.1.38. PMid:11751261.

Bó G, Mapletoft R. Evaluation and classification of bovine embryos. Anim Reprod. 2018;10(3):344-8.

Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci USA. 2018;115(9):2090-5. http://doi.org/10.1073/pnas.1716161115. PMid:29440377.

Borchardt S, Schüller L, Wolf L, Wesenauer C, Heuwieser W. Comparison of pregnancy outcomes using either an ovsynch or a cosynch protocol for the first timed ai with liquid or frozen semen in lactating dairy cows. Theriogenology. 2018;107:21-6. http://doi.org/10.1016/j.theriogenology.2017.10.026. PMid:29128697.

Bori L, Paya E, Alegre L, Viloria TA, Remohi JA, Naranjo V, Meseguer M. Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertil Steril. 2020;114(6):1232-41. http://doi.org/10.1016/j.fertnstert.2020.08.023. PMid:32917380.

Bremer J. Sperm quality, semen production, and fertility in young Norwegian Red bulls [thesis]. Hamar: Høgskolen i Innlandet; 2023.

Bremer J, Heringstad B, Morrell JM, Kommisrud E. Associations between insulin-like factor 3, scrotal circumference and semen characteristics in young Norwegian Red bulls. Animal. 2023a;17(3):100713. http://doi.org/10.1016/j.animal.2023.100713. PMid:36764017.

Bremer J, Maj M, Nordbø Ø, Kommisrud E. Deep learning–based automated measurements of the scrotal circumference of norwegian red bulls from 3d images. Smart Agricultural Technology. 2023b;3:100133. http://doi.org/10.1016/j.atech.2022.100133.

Butola A, Popova D, Prasad DK, Ahmad A, Habib A, Tinguely JC, Basnet P, Acharya G, Senthilkumaran P, Mehta DS, Ahluwalia BS. High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Sci Rep. 2020;10(1):13118. http://doi.org/10.1038/s41598-020-69857-4. PMid:32753627.

Caamaño J, Gómez E, Trigal B, Muñoz M, Carrocera S, Martín D, Díez C. Survival of vitrified in vitro–produced bovine embryos after a one-step warming in-straw cryoprotectant dilution procedure. Theriogenology. 2015;83(5):881-90. http://doi.org/10.1016/j.theriogenology.2014.11.021. PMid:25542458.

Carvalho PD, Hackbart KS, Bender RW, Baez GM, Dresch AR, Guenther JN, Souza AH, Fricke PM. Use of a single injection of long-acting recombinant bovine fsh to superovulate holstein heifers: a preliminary study. Theriogenology. 2014;82(3):481-9. http://doi.org/10.1016/j.theriogenology.2014.05.011. PMid:24938802.

Caujolle S, Cernat R, Silvestri G, Marques M, Bradu A, Feuchter T, Robinson G, Griffin DK, Podoleanu A. Speckle variance oct for depth resolved assessment of the viability of bovine embryos. Biomed Opt Express. 2017;8(11):5139-50. http://doi.org/10.1364/BOE.8.005139. PMid:29188109.

Chandra V, Sharma GT. In vitro strategies to enhance oocyte developmental competence. Front Biosci. 2020;12(1):116-36. http://doi.org/10.2741/s543. PMid:32114451.

Chimote B, Chimote N. Omics: metabolomics, proteomics, secretomics and genomics: its application in the viability score of oocyte and embryo. In: Mukherjee GG, Khastgir G, Chattopadhyay R, editors. Practical guide in andrology and embryology. New Delhi: Jaypee Brothers Medical Publishers; 2018. 394 p.

Cojkic A, Hansson I, Johannisson A, Axner E, Morrell JM. Single layer centrifugation as a method for bacterial reduction in bull semen for assisted reproduction. Vet Res Commun. 2024;48(1):39-48. http://doi.org/10.1007/s11259-023-10178-y. PMid:37479850.

Crowe AD, Lonergan P, Butler ST. Invited review: use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds. J Dairy Sci. 2021;104(12):12189-206. http://doi.org/10.3168/jds.2021-20281. PMid:34538485.

Currin L, Michalovic L, Bellefleur A-M, Gutierrez K, Glanzner W, Schuermann Y, Bohrer RC, Dicks N, da Rosa PR, De Cesaro MP, Lopez R, Grand FX, Vigneault C, Blondin P, Gourdon J, Baldassarre H, Bordignon V. The effect of age and length of gonadotropin stimulation on the in vitro embryo development of holstein calf oocytes. Theriogenology. 2017;104:87-93. http://doi.org/10.1016/j.theriogenology.2017.08.011. PMid:28822904.

Curti PF, Selli A, Pinto DL, Merlos-Ruiz A, Balieiro JCC, Ventura RV. Applications of livestock monitoring devices and machine learning algorithms in animal production and reproduction: an overview. Anim Reprod. 2023;20(2):e20230077. http://doi.org/10.1590/1984-3143-ar2023-0077. PMid:37700909.

Demetrio DGB, Benedetti E, Demetrio CGB, Fonseca J, Oliveira M, Magalhães A, Santos RM. How can we improve embryo production and pregnancy outcomes of holstein embryos produced in vitro? (12 years of practical results at a california dairy farm). Anim Reprod. 2020;17(3):e20200053. http://doi.org/10.1590/1984-3143-ar2020-0053. PMid:33029219.

Diskin M. Semen handling, time of insemination and insemination technique in cattle. Animal. 2018;12(s1):s75-84. http://doi.org/10.1017/S1751731118000952. PMid:29717688.

Do VH, Catt S, Kinder J, Walton S, Taylor-Robinson A. Vitrification of in vitro-derived bovine embryos: tar- geting enhancement of quality by refining technology and standardising procedures. Reprod Fertil Dev. 2019;31(5):837-46. http://doi.org/10.1071/RD18352. PMid:30625115.

Drozdowicz-Tomsia K, Anwer AG, Cahill MA, Madlum KN, Maki AM, Baker MS, Goldys EM. Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound nadh ratio changes associated with metabolic inhibition. J Biomed Opt. 2014;19(8):086016. http://doi.org/10.1117/1.JBO.19.8.086016. PMid:25140884.

Duranthon V, Chavatte-Palmer P. Long term effects of art: what do animals tell us? Mol Reprod Dev. 2018;85(4):348-68. http://doi.org/10.1002/mrd.22970. PMid:29457303.

Egashira J, Ihara Y, Khatun H, Wada Y, Konno T, Tatemoto H, Yamanaka K-I. Efficient in vitro embryo production using in vivo-matured oocytes from superstimulated japanese black cows. J Reprod Dev. 2019;65(2):183-90. http://doi.org/10.1262/jrd.2018-155. PMid:30745496.

Ericsson RJ, Langevin C, Nishino M. Isolation of fractions rich in human y sperm. Nature. 1973;246(5433):421-4. http://doi.org/10.1038/246421a0. PMid:4587152.

Fair S, Lonergan P. Understanding the causes of variation in reproductive wastage among bulls. Animal. 2018;12(s1):s53-62. http://doi.org/10.1017/S1751731118000964. PMid:29779500.

Farin P, Britt J, Shaw D, Slenning B. Agreement among evaluators of bovine embryos produced in vivo or in vitro. Theriogenology. 1995;44(3):339-49. http://doi.org/10.1016/0093-691X(95)00189-F. PMid:16727734.

Faust M, Betthauser J, Storch A, Crego S. Effects for fertility of processing steps of a new technology platform for producing sexed sperm. J Anim Sci. 2016;94:544.

Fayazi S, Damvar N, Molaeian S, Sarmadi F, Kazemi P, Tirgar P, Bagherzadeh M, Esfandiari S, Ziaei N, Dashtizad M. Thermally conductive graphene-based nanofluids, a novel class of cryosolutions for mouse blastocysts vitrification. Reprod Biol. 2022;22(2):100635. http://doi.org/10.1016/j.repbio.2022.100635. PMid:35305506.

Fernandez EI, Ferreira AS, Cecílio MHM, Chéles DS, de Souza RCM, Nogueira MFG, Rocha JC. Artificial intelligence in the ivf laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet. 2020;37(10):2359-76. http://doi.org/10.1007/s10815-020-01881-9. PMid:32654105.

Ferraz MA, Rho HS, Hemerich D, Henning HH, van Tol HT, Hölker M, Besenfelder U, Mokry M, Vos PL, Stout TA, Le Gac S, Gadella BM. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun. 2018;9(1):4934. http://doi.org/10.1038/s41467-018-07119-8. PMid:30467383.

Ferré LB, Kjelland ME, Taiyeb AM, Campos-Chillon F, Ross PJ. Recent progress in bovine in vitro- derived embryo cryotolerance: impact of in vitro culture systems, advances in cryopreservation and future considerations. Reprod Domest Anim. 2020;55(6):659-76. http://doi.org/10.1111/rda.13667. PMid:32144939.

Ferronato GA, Santos CM, Rosa PMS, Bridi A, Perecin F, Meirelles FV, Sangalli JR, da Silveira JC. Bovine in vitro oocyte maturation and embryo culture in liquid marbles 3d culture system. PLoS One. 2023;18(4):e0284809. http://doi.org/10.1371/journal.pone.0284809. PMid:37083878.

Fukunaga N, Sanami S, Kitasaka H, Tsuzuki Y, Watanabe H, Kida Y, Takeda S, Asada Y. Development of an automated two pronuclei detection system on time-lapse embryo images using deep learning techniques. Reprod Med Biol. 2020;19(3):286-94. http://doi.org/10.1002/rmb2.12331. PMid:32684828.

Gallego RD, Remohí J, Meseguer M. Time-lapse imaging: the state of the art. Biol Reprod. 2019;101(6):1146-54. http://doi.org/10.1093/biolre/ioz035. PMid:30810735.

García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, van Tassell CP. Changes in genetic selection differentials and generation intervals in us holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci USA. 2016;113(28):E3995-4004. http://doi.org/10.1073/pnas.1519061113. PMid:27354521.

Garner D, Seidel G Jr. History of commercializing sexed semen for cattle. Theriogenology. 2008;69(7):886-95. http://doi.org/10.1016/j.theriogenology.2008.01.006. PMid:18343491.

Ghazouani O, Basquin S, Michel G, Chaigneau A, Guillaume F, Le Corvec M, Guyonnet B. Mid-infrared based technology to predict bovine semen fertility. Anim Reprod Sci. 2020;220:106388. http://doi.org/10.1016/j.anireprosci.2020.106388.

Gómez E, Carrocera S, Martín D, Pérez-Jánez JJ, Prendes J, Prendes JM, Vázquez A, Murillo A, Gimeno I, Muñoz M. Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium. Theriogenology. 2020;146:39-47. http://doi.org/10.1016/j.theriogenology.2020.01.056. PMid:32036059.

Gonçalves PBD, Figueiredo JRd, Gasperin BG. Biotécnicas aplicadas à reprodução animal e à humana. Rio de Janeiro: Roca; 2021.

Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? a randomized controlled trial. Fertil Steril. 2016;105(2):275-85.e10. http://doi.org/10.1016/j.fertnstert.2015.10.013. PMid:26522611.

Gosnell ME, Anwer AG, Cassano JC, Sue CM, Goldys EM. Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders. Biochim Biophys Acta. 2016;1863(1):56-63. http://doi.org/10.1016/j.bbamcr.2015.09.030. PMid:26431992.

Grunewald S, Paasch U, Glander H-J, Anderegg U. Mature human spermatozoa do not transcribe novel RNA. Andrologia. 2005;37(2-3):69-71. http://doi.org/10.1111/j.1439-0272.2005.00656.x. PMid:16026427.

Guerreiro BM, Batista E, Vieira LM, Sá MF Fo, Rodrigues CA, Castro A No, Silveira CRA, Bayeux B, Dias E, Monteiro F, et al. Plasma anti-mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domest Anim Endocrinol. 2014;49:96-104. http://doi.org/10.1016/j.domaniend.2014.07.002. PMid:25136816.

Guillaume F, Corvec ML, Bretagne TD, Michel G, Basquin S, Charreaux F, Tariel H, Guyonnet B. Method for determining the sperm quality of vertebrate animals. Patent No. WO2017068266A1. 2017.

Guimarães A, Pereira S, Leme L, Dode M. Evaluation of the simulated physiological oocyte maturation system for improving bovine in vitro embryo production. Theriogenology. 2015;83(1):52-7. http://doi.org/10.1016/j.theriogenology.2014.07.042. PMid:25447152.

Gutiérrez-Reinoso MA, Aguilera CJ, Navarrete F, Cabezas J, Castro FO, Cabezas I, Sánchez O, García-Herreros M, Rodríguez-Alvarez L. Effects of extra-long-acting recombinant bovine fsh (bscrFSH) on cattle superovulation. Animals. 2022;12(2):153. http://doi.org/10.3390/ani12020153. PMid:35049777.

Gutiérrez-Reinoso MA, Arreseigor CJ, Driedger B, Cabezas I, Hugues F, Parra NC, Sánchez O, Toledo JR, Garcia-Herreros M. Effects of recombinant FSH (bscrFSH) and pituitary FSH (bscrFSH) on embryo production in superovulated dairy heifers inseminated with unsorted and sex-sorted semen. Anim Reprod Sci. 2023;252:107226. http://doi.org/10.1016/j.anireprosci.2023.107226. PMid:37027990.

Ha A-N, Lee S-R, Jeon J-S, Park H-S, Lee S-H, Jin J-I, Sessions BR, Wang Z, White KL, Kong I-K. Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology. 2014;68(1):57-64. http://doi.org/10.1016/j.cryobiol.2013.11.007. PMid:24287314.

Hajjar Z, Rashidi A, Ghozatloo A. Enhanced thermal conductivities of graphene oxide nanofluids. Int Commun Heat Mass Transf. 2014;57:128-31. http://doi.org/10.1016/j.icheatmasstransfer.2014.07.018.

Han TL, Flaherty SP, Ford JH, Matthews CD. Detection of x-and y-bearing human spermatozoa after motile sperm isolation by swim-up. Fertil Steril. 1993;60(6):1046-51. http://doi.org/10.1016/S0015-0282(16)56408-5. PMid:8243684.

Hanassab S, Abbara A, Yeung AC, Voliotis M, Tsaneva-Atanasova K, Kelsey TW, Trew GH, Nelson SM, Heinis T, Dhillo WS. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55. http://doi.org/10.1038/s41746-024-01006-x. PMid:38429464.

Hansen PJ. Implications of assisted reproductive technologies for pregnancy outcomes in mammals. Annu Rev Anim Biosci. 2020;8(1):395-413. http://doi.org/10.1146/annurev-animal-021419-084010. PMid:32069434.

Hasler JF. Looking back at five decades of embryo technology in practice. Reprod Fertil Dev. 2023;36(2):1-15. http://doi.org/10.1071/RD23120. PMid:38064185.

Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539(7628):299-303. http://doi.org/10.1038/nature20104. PMid:27750280.

Hilz S, Modzelewski AJ, Cohen PE, Grimson A. The roles of micrornas and sirnas in mammalian spermatogenesis. Development. 2016;143(17):3061-73. http://doi.org/10.1242/dev.136721. PMid:27578177.

Hirayama H, Kageyama S, Naito A, Fukuda S, Fujii T, Minamihashi A. Prediction of superovulatory response in japanese black cattle using ultrasound, plasma anti-müllerian hormone concentrations and polymorphism in the ionotropic glutamate receptor AMPA1/GRIA1. J Reprod Dev. 2012;58(3):380-3. http://doi.org/10.1262/jrd.11-129S. PMid:22447325.

Hitit M, Memili E. Sperm signatures of fertility and freezability. Anim Reprod Sci. 2022;247:107147. http://doi.org/10.1016/j.anireprosci.2022.107147. PMid:36379193.

Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9(4):e1312. http://doi.org/10.1002/widm.1312. PMid:32089788.

Hürland M, Kuhlgatz D, Kuhlgatz C, Osmers J, Jung M, Schulze M. The use of machine learning methods to predict sperm quality in holstein bulls. Theriogenology. 2023;197:16-25. http://doi.org/10.1016/j.theriogenology.2022.11.032. PMid:36462332.

Inaba Y, Aikawa Y, Hirai T, Hashiyada Y, Yamanouchi T, Misumi K, Ohtake M, Somfai T, Kobayashi S, Saito N, Matoba S, Konishi K, Imai K. In-straw cryoprotectant dilution for bovine embryos vitrified using cryotop. J Reprod Dev. 2011;57(4):437-43. http://doi.org/10.1262/jrd.10-154M. PMid:21467736.

Ireland J, Ward F, Jimenez-Krassel F, Ireland J, Smith G, Lonergan P, Evans A. Follicle numbers are highly repeatable within individual animals but are inversely correlated with fsh concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum Reprod. 2007;22(6):1687-95. http://doi.org/10.1093/humrep/dem071. PMid:17468258.

Ireland J, Smith G, Scheetz D, Jimenez-Krassel F, Folger J, Ireland J, Mossa F, Lonergan P, Evans A. Does size matter in females? an overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-müllerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle. Reprod Fertil Dev. 2011;23(1):1-14. http://doi.org/10.1071/RD10226. PMid:21366975.

Itchhaporia D. Artificial intelligence in cardiology. Trends Cardiovasc Med. 2022;32(1):34-41. PMid:33242635.

Javadi S, Mirroshandel SA. A novel deep learning method for automatic assessment of human sperm images. Comput Biol Med. 2019;109:182-94. http://doi.org/10.1016/j.compbiomed.2019.04.030. PMid:31059902.

Jeong W, Cho S, Lee H, Deb G, Lee Y, Kwon T, Kong I. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine ivp embryos. Theriogenology. 2009;72(4):584-9. http://doi.org/10.1016/j.theriogenology.2009.04.015. PMid:19501898.

Jiang Z. Molecular and cellular programs underlying the development of bovine pre-implantation embryos. Reprod Fertil Dev. 2023;36(2):34-42. http://doi.org/10.1071/RD23146. PMid:38064195.

Kaneko S, Yamaguchi J, Kobayashi T, Iizuka R. Separation of human x-and y-bearing sperm using percoll density gradient centrifugation. Fertil Steril. 1983;40(5):661-5. http://doi.org/10.1016/S0015-0282(16)47427-3. PMid:6628711.

Karcz A, van Soom A, Smits K, Verplancke R, van Vlierberghe S, Vanfleteren J. Electrically-driven handling of gametes and embryos: taking a step towards the future of arts. Lab Chip. 2022;22(10):1852-75. http://doi.org/10.1039/D1LC01160J. PMid:35510672.

Karcz A, van Soom A, Smits K, van Vlierberghe S, Verplancke R, Pascottini OB, van den Abbeel E, Vanfleteren J. Development of a microfluidic chip powered by ewod for in vitro manipulation of bovine embryos. Biosensors. 2023;13(4):419. http://doi.org/10.3390/bios13040419. PMid:37185494.

Kastelic JP. Understanding and evaluating bovine testes. Theriogenology. 2014;81(1):18-23. http://doi.org/10.1016/j.theriogenology.2013.09.001. PMid:24274406.

Kauffold J, Amer HA, Bergfeld U, Weber W, Sobiraj A. The in vitro developmental competence of oocytes from juvenile calves is related to follicular diameter. J Reprod Dev. 2005;51(3):325-32. http://doi.org/10.1262/jrd.17002. PMid:16000866.

Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano. 2017;11(8):7869-78. http://doi.org/10.1021/acsnano.7b02216. PMid:28702993.

Kommisrud E, Hofmo PO, Klinkenberg G. Preservation and controlled delivery/release of spermatozoa. US Patent 8,178,130. 2012.

Krause A, Dias F, Caunce S, Adams G, Mapletoft R, Singh J. Predictors of the ovarian superstimulatory response and oocyte collection in prepubertal heifers. Domest Anim Endocrinol. 2022;81:106729. http://doi.org/10.1016/j.domaniend.2022.106729. PMid:35462327.

Krisher RL, Schoolcraft WB, Katz-Jaffe MG. Omics as a window to view embryo viability. Fertil Steril. 2015;103(2):333-41. http://doi.org/10.1016/j.fertnstert.2014.12.116. PMid:25639968.

Kumaresan A, Johannisson A, Al-Essawe EM, Morrell JM. Sperm viability, reactive oxygen species, and dna fragmentation index combined can discriminate between above-and below-average fertility bulls. J Dairy Sci. 2017;100(7):5824-36. http://doi.org/10.3168/jds.2016-12484. PMid:28478003.

Ladha S. Lipid heterogeneity and membrane fluidity in a highly polarized cell, the mammalian spermatozoon. J Membr Biol. 1998;165(1):1-10. http://doi.org/10.1007/s002329900415. PMid:9705977.

Le Berre C, Sandborn WJ, Aridhi S, Devignes M-D, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-Biroulet L. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology. 2020;158(1):76-94.e2. http://doi.org/10.1053/j.gastro.2019.08.058. PMid:31593701.

Leemans B, Stout TA, De Schauwer C, Heras S, Nelis H, Hoogewijs M, van Soom A, Gadella BM. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction. 2019;157(5):R181-97. http://doi.org/10.1530/REP-18-0541. PMid:30721132.

Leslie-Mazwi TM, Lev MH. Towards artificial intelligence for clinical stroke care. Nat Rev Neurol. 2020;16(1):5-6. http://doi.org/10.1038/s41582-019-0287-9. PMid:31745298.

Liu L, Jiao Y, Li X, Ouyang Y, Shi D. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput Methods Programs Biomed. 2020;196:105624. http://doi.org/10.1016/j.cmpb.2020.105624. PMid:32623348.

Looney C, Bondioli K, Hill K, Massey J. Superovulation of donor cows with bovine follicle-stimulating hormone (bfsh) produced by recombinant dna technology. Theriogenology. 1988;29(1):271. http://doi.org/10.1016/0093-691X(88)90099-4.

Luciano AM, Sirard M-A. Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biol Reprod. 2018;98(2):162-9. http://doi.org/10.1093/biolre/iox149. PMid:29165545.

Mandal R, Badyakar D, Chakrabarty J. Role of membrane lipid fatty acids in sperm cryopreservation. Adv Androl. 2014;2014(1):190542. http://doi.org/10.1155/2014/190542.

Manteca Vilanova X, De Briyne N, Beaver B, Turner PV. Horse welfare during equine chorionic gonadotropin (ECG) production. Animals. 2019;9(12):1053. http://doi.org/10.3390/ani9121053. PMid:31805698.

Mastergen. Factsheets: fertimax-sires [Internet]. 2024 [cited 2024 Mar 14]. Available from: https://mastergen.com/factsheets/fertimax-sires/

Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Urataki K, Hishinuma M, Ohbayashi T, Nishimura R. Three-dimensional live imaging of bovine preimplantation embryos: a new method for ivf embryo evaluation. Front Vet Sci. 2021;8:639249. http://doi.org/10.3389/fvets.2021.639249. PMid:33981741.

Masuda Y, Hasebe R, Kuromi Y, Hishinuma M, Ohbayashi T, Nishimura R. Hatchability evaluation of bovine ivf embryos using oct-based 3d image analysis. J Reprod Dev. 2023;69(5):239-45. http://doi.org/10.1262/jrd.2023-009. PMid:37574267.

Matoba S, Yoshioka H, Matsuda H, Sugimura S, Aikawa Y, Ohtake M, Hashiyada Y, Seta T, Nakagawa K, Lonergan P, Imai K. Optimizing production of in vivo-matured oocytes from superstimulated holstein cows for in vitro production of embryos using x-sorted sperm. J Dairy Sci. 2014;97(2):743-53. http://doi.org/10.3168/jds.2013-6838. PMid:24290822.

Mermillod P, Oussaid B, Cognie Y. Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J Reprod Fertil Suppl. 1999;54:449-60. PMid:10692875.

Mermillod P, Tomanek M, Marchal R, Meijer L. High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of mpf kinase activity. Mol Reprod Dev. 2000;55(1):89-95. http://doi.org/10.1002/(SICI)1098-2795(200001)55:1<89::AID-MRD12>3.0.CO;2-M. PMid:10602278.

Meuwissen T, Hayes B, Goddard M. Genomic selection: a paradigm shift in animal breeding. Anim Front. 2016;6(1):6-14. http://doi.org/10.2527/af.2016-0002.

Miguel-Jimenez S, Rivera del Alamo MM, Álvarez-Rodriguez M, Hidalgo CO, Peña AI, Muino R, Rodríguez-Gil JE, Mogas T. In vitro assessment of egg yolk-, soya bean lecithin-and liposome-based extenders for cryopreservation of dairy bull semen. Anim Reprod Sci. 2020;215:106315. http://doi.org/10.1016/j.anireprosci.2020.106315. PMid:32216928.

Mirsky SK, Barnea I, Levi M, Greenspan H, Shaked NT. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry A. 2017;91(9):893-900. http://doi.org/10.1002/cyto.a.23189. PMid:28834185.

Mobedi E, Harati HRD, Allahyari I, Gharagozlou F, Vojgani M, Baghbanani RH, Akbarinejad A, Akbarinejad V. Developmental programming of production and reproduction in dairy cows: IV. association of maternal milk fat and protein percentage and milk fat to protein ratio with offspring’s birth weight, survival, productive and reproductive performance and AMH concentration from birth to the first lactation period. Theriogenology. 2024;220:12-25. http://doi.org/10.1016/j.theriogenology.2024.03.001. PMid:38457855.

Mogas T. Update on the vitrification of bovine oocytes and in vitro-produced embryos. Reprod Fertil Dev. 2018;31(1):105-17. http://doi.org/10.1071/RD18345. PMid:32188546.

Mokhtassi-Bidgoli A, Sharafi M, Benson JD. Optimizing bull semen cryopreservation media using multivariate statistics approaches. Animals. 2023;13(6):1077. http://doi.org/10.3390/ani13061077. PMid:36978618.

Monniaux D, Barbey S, Rico C, Fabre S, Gallard Y, Larroque H. Anti-müllerian hormone: a predictive marker of embryo production in cattle? Reprod Fertil Dev. 2010;22(7):1083-91. http://doi.org/10.1071/RD09279. PMid:20797346.

Monniaux D, Drouilhet L, Rico C, Estienne A, Jarrier P, Touzé J-L, Sapa J, Phocas F, Dupont J, Dalbies-Tran R, Fabre S. Regulation of anti-müllerian hormone production in domestic animals. Reprod Fertil Dev. 2012;25(1):1-16. http://doi.org/10.1071/RD12270. PMid:23244824.

Morató R, Mogas T. New device for the vitrification and in-straw warming of in vitro produced bovine embryos. Cryobiology. 2014;68(2):288-93. http://doi.org/10.1016/j.cryobiol.2014.02.010. PMid:24560985.

Morrell J, Johannisson A, Dalin A-M, Rodriguez-Martinez H. Single-layer centrifugation with androcoll-e can be scaled up to allow large volumes of stallion ejaculate to be processed easily. Theriogenology. 2009;72(6):879-84. http://doi.org/10.1016/j.theriogenology.2009.05.015. PMid:19604571.

Mossa F, Carter F, Walsh SW, Kenny DA, Smith GW, Ireland JL, Hildebrandt TB, Lonergan P, Ireland JJ, Evans AC. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol Reprod. 2013;88(4):92. http://doi.org/10.1095/biolreprod.112.107235. PMid:23426432.

Munkittrick T, Nebel R, Saacke R. Accessory sperm numbers for cattle inseminated with protamine sulfate microcapsules. J Dairy Sci. 1992;75(3):725-31. http://doi.org/10.3168/jds.S0022-0302(92)77809-6. PMid:1569263.

Narud B, Klinkenberg G, Khezri A, Zeremichael TT, Stenseth E-B, Nordborg A, Haukaas TH, Morrell JM, Heringstad B, Myromslien FD, Kommisrud E. Differences in sperm functionality and intracellular metabolites in norwegian red bulls of contrasting fertility. Theriogenology. 2020;157:24-32. http://doi.org/10.1016/j.theriogenology.2020.07.005. PMid:32777668.

Narud B, Khezri A, Zeremichael TT, Stenseth E-B, Heringstad B, Johannisson A, Morrell JM, Collas P, Myromslien FD, Kommisrud E. Sperm chromatin integrity and dna methylation in norwegian red bulls of contrasting fertility. Mol Reprod Dev. 2021;88(3):187-200. http://doi.org/10.1002/mrd.23461. PMid:33634579.

Nava-Trujillo H, Rivera RM. Large offspring syndrome in ruminants: current status and prediction during pregnancy. Animal. 2023;17(Suppl 1):100740. http://doi.org/10.1016/j.animal.2023.100740. PMid:37567678.

Nebel R, Vishwanath R, McMillan W, Saacke R. Microencapsulation of bovine spermatozoa for use in artificial insemination: a review. Reprod Fertil Dev. 1993;5(6):701-12. http://doi.org/10.1071/RD9930701. PMid:9627730.

Nebel R, Vishwanath R, McMillan W, Pitt C. Microencapsulation of bovine spermatozoa: effect of capsule membrane thickness on spermatozoal viability and fertility. Anim Reprod Sci. 1996;44(2):79-89. http://doi.org/10.1016/0378-4320(96)01540-0.

Nongbua T, Johannisson A, Edman A, Morrell J. Effects of single layer centrifugation (SLC) on bull spermatozoa prior to freezing on post-thaw semen characteristics. Reprod Domest Anim. 2017;52(4):596-602. http://doi.org/10.1111/rda.12954. PMid:28326621.

Norman H, Hutchison J, Miller R. Use of sexed semen and its effect on conception rate, calf sex, dystocia, and stillbirth of holsteins in the United States. J Dairy Sci. 2010;93(8):3880-90. http://doi.org/10.3168/jds.2009-2781. PMid:20655457.

Oliveira Fernandes G, Milazzotto MP, Fidelis AAG, Kawamoto TS, Oliveira Leme L, Lima CB, Franco MM, Dode MAN. Biochemical markers for pregnancy in the spent culture medium of in vitro produced bovine embryos. Biol Reprod. 2021;105(2):481-90. http://doi.org/10.1093/biolre/ioab095. PMid:33982057.

Oliveira CS, Feuchard VLS, Freitas C, Rosa PMS, Camargo AJR, Saraiva NZ. In-straw warming protocol improves survival of vitrified embryos and allows direct transfer in cattle. Cryobiology. 2020;97:222-5. http://doi.org/10.1016/j.cryobiol.2020.02.007. PMid:32126213.

Pan B, Li J. The art of oocyte meiotic arrest regulation. Reprod Biol Endocrinol. 2019;17(1):8. http://doi.org/10.1186/s12958-018-0445-8. PMid:30611263.

Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666. http://doi.org/10.1038/164666a0. PMid:18143360.

Quelhas J, Santiago J, Matos B, Rocha A, Lopes G, Fardilha M. Bovine semen sexing: sperm membrane proteomics as candidates for immunological selection of x-and y-chromosome-bearing sperm. Vet Med Sci. 2021;7(5):1633-41. http://doi.org/10.1002/vms3.540. PMid:34037311.

Rabel RC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-implantation bovine embryo evaluation: from optics to omics and beyond. Animals. 2023;13(13):2102. http://doi.org/10.3390/ani13132102. PMid:37443900.

Raimundo J, Cabrita P. Artificial intelligence at assisted reproductive technology. Procedia Comput Sci. 2021;181:442-7. http://doi.org/10.1016/j.procs.2021.01.189.

Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia. 2000;2(1-2):89-117. http://doi.org/10.1038/sj.neo.7900077. PMid:10933071.

Ratna M, Bhattacharya S, Abdulrahim B, McLernon D. A systematic review of the quality of clinical prediction models in in vitro fertilisation. Hum Reprod. 2020;35(1):100-16. http://doi.org/10.1093/humrep/dez258. PMid:31960915.

Reese S, Pirez MC, Steele H, Kölle S. The reproductive success of bovine sperm after sex-sorting: a meta-analysis. Sci Rep. 2021;11(1):17366. http://doi.org/10.1038/s41598-021-96834-2. PMid:34462506.

Ribeiro E, Bisinotto R, Lima F, Greco L, Morrison A, Kumar A, Thatcher W, Santos J. Plasma anti-müllerian hormone in adult dairy cows and associations with fertility. J Dairy Sci. 2014;97(11):6888-900. http://doi.org/10.3168/jds.2014-7908. PMid:25173464.

Rico C, Drouilhet L, Salvetti P, Dalbies-Tran R, Jarrier P, Touzé J-L, Pillet E, Ponsart C, Fabre S, Monniaux D. Determination of anti-müllerian hormone concentrations in blood as a tool to select holstein donor cows for embryo production: from the laboratory to the farm. Reprod Fertil Dev. 2012;24(7):932-44. http://doi.org/10.1071/RD11290. PMid:22935154.

Riegler MA, Stensen MH, Witczak O, Andersen JM, Hicks S, Hammer HL, Delbarre E, Halvorsen P, Yazidi A, Holst N, Haugen TB. Artificial intelligence in the fertility clinic: status, pitfalls and possibilities. Hum Reprod. 2021;36(9):2429-42. http://doi.org/10.1093/humrep/deab168. PMid:34324672.

Rosenwaks Z. Artificial intelligence in reproductive medicine: a fleeting concept or the wave of the future? Fertil Steril. 2020;114(5):905-7. http://doi.org/10.1016/j.fertnstert.2020.10.002. PMid:33160511.

Saito T, Rehmsmeier M. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10(3):e0118432. http://doi.org/10.1371/journal.pone.0118432. PMid:25738806.

Sanches BV, Lunardelli PA, Tannura JH, Cardoso BL, Pereira MHC, Gaitkoski D, Basso AC, Arnold DR, Seneda MM. A new direct transfer protocol for cryopreserved ivf embryos. Theriogenology. 2016;85(6):1147-51. http://doi.org/10.1016/j.theriogenology.2015.11.029. PMid:26739533.

Sanderson N, Martinez M. A single administration of a long-acting recombinant ovine fsh (rofsh) for cattle superovulation. Theriogenology. 2020;154:66-72. http://doi.org/10.1016/j.theriogenology.2020.04.037. PMid:32512315.

Seidel G Jr. Update on sexed semen technology in cattle. Animal. 2014;8(Suppl 1):160-4. http://doi.org/10.1017/S1751731114000202. PMid:24680061.

Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier J-P, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding rnas and their diversity across breeds. Epigenetics Chromatin. 2020;13(1):19. http://doi.org/10.1186/s13072-020-00340-0. PMid:32228651.

Sequeira RC, Criswell T, Atala A, Yoo JJ. Microfluidic systems for assisted reproductive technologies: advantages and potential applications. Tissue Eng Regen Med. 2020;17(6):787-800. http://doi.org/10.1007/s13770-020-00311-2. PMid:33237567.

Souza A, Carvalho P, Rozner A, Vieira L, Hackbart K, Bender R, Dresch A, Verstegen J, Shaver R, Wiltbank M. Relationship between circulating anti-müllerian hormone (AMH) and superovulatory response of high-producing dairy cows. J Dairy Sci. 2015;98(1):169-78. http://doi.org/10.3168/jds.2014-8182. PMid:25465542.

Standerholen F, Waterhouse KE, Larsgard AG, Garmo RT, Myromslien FD, Sunde J, Ropstad E, Klinkenberg G, Kommisrud E. Use of immobilized cryopreserved bovine semen in a blind artificial insemination trial. Theriogenology. 2015;84(3):413-20. http://doi.org/10.1016/j.theriogenology.2015.03.028. PMid:25922170.

Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech. 2004;36(1):381-411. http://doi.org/10.1146/annurev.fluid.36.050802.122124.

Stringfellow D. Manual of the International Embryo Transfer Society: a procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures. Champaign: IETS; 2010.

Succu S, Sale S, Ghirello G, Ireland J, Evans A, Atzori A, Mossa F. Exposure of dairy cows to high environmental temperatures and their lactation status impairs establishment of the ovarian reserve in their offspring. J Dairy Sci. 2020;103(12):11957-69. http://doi.org/10.3168/jds.2020-18678. PMid:33041040.

Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One. 2012;7(5):e36627. http://doi.org/10.1371/journal.pone.0036627. PMid:22590579.

Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev. 2017;63(4):353-7. http://doi.org/10.1262/jrd.2017-041. PMid:28552887.

Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable effectiveness of data in deep learning era. New York: IEEE; 2017. p. 843-52.

Sutton-McDowall ML, Purdey M, Brown HM, Abell AD, Mottershead DG, Cetica PD, Dalvit GC, Goldys EM, Gilchrist RB, Gardner DK, Thompson JG. Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone. Mol Reprod Dev. 2015;82(4):281-94. http://doi.org/10.1002/mrd.22470. PMid:25721374.

Sutton-McDowall ML, Gosnell M, Anwer AG, White M, Purdey M, Abell AD, Goldys EM, Thompson JG. Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum Reprod. 2017;32(10):2016-25. http://doi.org/10.1093/humrep/dex261. PMid:28938734.

Tajimi H, Yamazaki T, Oike S, Yoshida T, Okada K, Kuwayama M, Ushijima H. Vitrification for bovine embryos with low-quality grade. Anim Sci J. 2018;89(8):1194-200. http://doi.org/10.1111/asj.13024. PMid:29770989.

Talluri TR, Kumaresan A, Sinha MK, Paul N, Ebenezer Samuel King JP, Datta TK. Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility. Sci Rep. 2022;12(1):10692. http://doi.org/10.1038/s41598-022-14589-w. PMid:35739152.

Thibier M, Wagner H-G. World statistics for artificial insemination in cattle. Livest Prod Sci. 2002;74(2):203-12. http://doi.org/10.1016/S0301-6226(01)00291-3.

Thomas RE, Armstrong DT, Gilchrist RB. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol. 2002;244(2):215-25. http://doi.org/10.1006/dbio.2002.0609. PMid:11944932.

Thompson JG, Brown HM, Sutton-McDowall ML. Measuring embryo metabolism to predict embryo quality. Reprod Fertil Dev. 2016;28(1-2):41-50. http://doi.org/10.1071/RD15340. PMid:27062873.

Thomson EE, Beltman ME, Crowe MA, McAloon CG, Furlong JG, Duane MM, Brennan JP, McDonald MM, Kelly ET. Association between maternal growth in the pre-conception and early gestational period of nulliparous dairy heifers with anti-müllerian hormone in their female offspring. Reprod Domest Anim. 2024;59(1):e14498. http://doi.org/10.1111/rda.14498. PMid:37902253.

Tippenhauer C, Plenio J-L, Madureira A, Cerri R, Heuwieser W, Borchardt S. Timing of artificial insemination using fresh or frozen semen after automated activity monitoring of estrus in lactating dairy cows. J Dairy Sci. 2021;104(3):3585-95. http://doi.org/10.3168/jds.2020-19278. PMid:33455771.

Tšuiko O, Catteeuw M, Zamani Esteki M, Destouni A, Bogado Pascottini O, Besenfelder U, Havlicek V, Smits K, Kurg A, Salumets A, D’Hooghe T, Voet T, van Soom A, Robert Vermeesch J. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum Reprod. 2017;32(11):2348-57. http://doi.org/10.1093/humrep/dex286. PMid:29040498.

Valente RS, Marsico TV, Sudano MJ. Basic and applied features in the cryopreservation progress of bovine embryos. Anim Reprod Sci. 2022;239:106970. http://doi.org/10.1016/j.anireprosci.2022.106970. PMid:35397403.

van de Leemput E, Vos P, Zeinstra E, Bevers mm, van der Weijden G, Dieleman S. Improved in vitro embryo development using in vivo matured oocytes from heifers superovulated with a controlled preovulatory lh surge. Theriogenology. 1999;52(2):335-49. http://doi.org/10.1016/S0093-691X(99)00133-8. PMid:10734399.

van Eenennaam AL, Silva FF, Trott JF, Zilberman D. Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu Rev Anim Biosci. 2021;9(1):453-78. http://doi.org/10.1146/annurev-animal-061220-023052. PMid:33186503.

van Soom A, Mateusen B, Leroy J, De Kruif A. Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reprod Biomed Online. 2003;7(6):664-70. http://doi.org/10.1016/S1472-6483(10)62089-5. PMid:14748965.

Viana J. 2022 statistics of embryo production and transfer in domestic farm animals. Embryo Technol Newsl. 2023;41(4):20-38.

Vieira A, Forell F, Feltrin C, Rodrigues J. In-straw cryoprotectant dilution of ivp bovine blastocysts vitrified in hand-pulled glass micropipettes. Anim Reprod Sci. 2007;99(3-4):377-83. http://doi.org/10.1016/j.anireprosci.2006.06.010. PMid:16870364.

Villa-Arcila N, Sanchez J, Ratto M, Rodriguez-Lecompte J, Duque-Madrid P, Sanchez-Arias S, Ceballos-Marquez A. The association between subclinical mastitis around calving and reproductive performance in grazing dairy cows. Anim Reprod Sci. 2017;185:109-17. http://doi.org/10.1016/j.anireprosci.2017.08.010. PMid:28869109.

Vishwanath R, Moreno J. Semen sexing–current state of the art with emphasis on bovine species. Animal. 2018;12(s1):s85-96. http://doi.org/10.1017/S1751731118000496. PMid:29552998.

Vishwanath R, Nebel R, McMillan W, Pitt C, MacMillan K. Selected times of insemination with microencap- sulated bovine spermatozoa affect pregnancy rates of synchronized heifers. Theriogenology. 1997;48(3):369-76. http://doi.org/10.1016/S0093-691X(97)00248-3. PMid:16728135.

Voelkel S, Hu Y. Direct transfer of frozen-thawed bovine embryos. Theriogenology. 1992;37(1):23-37. http://doi.org/10.1016/0093-691X(92)90245-M. PMid:16727070.

Waite R, Dwyer C, Beggs D, Mansell P, Stevenson M, Pyman M. Scrotal circumference, bodyweight and semen characteristics in growing dairy-breed natural-service bulls in tasmania, australia. N Z Vet J. 2019;67(3):109-16. http://doi.org/10.1080/00480169.2018.1563512. PMid:30625279.

Watson A. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci. 2007;85(13, Suppl):E1-3. http://doi.org/10.2527/jas.2006-432. PMid:17322120.

Weller A. Transparency: motivations and challenges. In: Samek W, Montavon G, Vedaldi A, Hansen L, Müller KR, editors. Explainable AI: interpreting, explaining and visualizing deep learning. Cham: Springer; 2019. p. 23-40. http://doi.org/10.1007/978-3-030-28954-6_2.

Wiebke M, Hensel B, Nitsche-Melkus E, Jung M, Schulze M. Cooled storage of semen from livestock animals (part i): Boar, bull, and stallion. Anim Reprod Sci. 2022;246:106822. http://doi.org/10.1016/j.anireprosci.2021.106822. PMid:34400028.

Wiebke M, Pieper L, Gürler H, Janowitz U, Jung M, Schulze M. Effect of using liquid semen on fertility in german holstein friesian dairy cattle: A randomized controlled clinical trial. Theriogenology. 2023;199:50-6. http://doi.org/10.1016/j.theriogenology.2023.01.012. PMid:36696769.

Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by fourier domain optical coherence tomography. J Biomed Opt. 2002;7(3):457-63. http://doi.org/10.1117/1.1482379. PMid:12175297.

Wrenzycki C. In vitro culture systems: how far are we from optimal conditions? Anim Reprod. 2018;13(3):279-82. http://doi.org/10.21451/1984-3143-AR869.

Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev. 2021;34(2):190-202. http://doi.org/10.1071/RD21283. PMid:35231232.

Wydooghe E, Vandaele L, Piepers S, Dewulf J, van den Abbeel E, De Sutter P, van Soom A. Individual commitment to a group effect: strengths and weaknesses of bovine embryo group culture. Reproduction. 2014;148(5):519-29. http://doi.org/10.1530/REP-14-0213. PMid:25118302.

Yánez-Ortiz I, Catalán J, Rodríguez-Gil JE, Miró J, Yeste M. Advances in sperm cryopreservation in farm animals: cattle, horse, pig and sheep. Anim Reprod Sci. 2022;246:106904. http://doi.org/10.1016/j.anireprosci.2021.106904. PMid:34887155.

Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683. http://doi.org/10.1371/journal.pmed.1002683. PMid:30399157.

Zhang Y, Fu X, Chen L, Feng C, Bi J, Mo X, Cheng K, Zhang R, Li S, Zhu S. A simple and efficient vitrification method for in-straw dilution and direct transfer of bovine embryos. Cryo Letters. 2015;36(6):392-8. PMid:26963885.

Zhao M, Xu M, Li H, Alqawasmeh O, Chung JPW, Li TC, Lee T-L, Tang PM-K, Chan DYL. Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. J Cell Mol Med. 2021;25(5):2633-44. http://doi.org/10.1111/jcmm.16288. PMid:33486848.

Zuidema D, Kerns K, Sutovsky P. An exploration of current and perspective semen analysis and sperm selection for livestock artificial insemination. Animals. 2021;11(12):3563. http://doi.org/10.3390/ani11123563. PMid:34944339.
 


Submitted date:
03/15/2024

Accepted date:
06/14/2024

66b4afb4a95395051c320cd5 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections