Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0032
Animal Reproduction (AR)
Thematic Section: 37th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

From the laboratory to the field: how to mitigate pregnancy losses in embryo transfer programs?

Marcelo Marcondes Seneda; Camila Bortoliero Costa; Amanda Fonseca Zangirolamo; Mariana Moreira dos Anjos; Gabriela Rodrigues de Paula; Fábio Morotti

Downloads: 0
Views: 156

Abstract

Highlights
- Embryonic mortality is responsible for a large proportion of gestational losses in cattle.
- Better quality embryos reduce the chance of early embryonic mortality.
- The evaluation of CL in the selection of recipients tends to favor a reduction in embryonic loss.

Abstract

Pregnancy losses negatively affect the cattle industry, impacting economic indices and consequently the entire production chain. Early embryonic failure has been an important challenge in the embryo industry because proper identification of embryo death at the beginning of gestation is difficult. This review aimed to provide a better understanding on reproductive failure and the relationship between early embryonic loss and different reproductive biotechniques. This review also considers insights and possible strategies for reducing early embryonic loss. The strategies addressed are as follows: i) great impact of rigorous embryo evaluation on reducing embryo losses; ii) selection of recipients at the time of transfer, taking into account health and nutritional status, and classification of the corpus luteum using ultrasound, either in area or vascularization; and iii) paternal effect as one of the factors that contribute to pregnancy losses, with a focus on embryo transfer.

Graphical Abstract

Embryonic loss rates in cattle vary according to the physiological developmental stage of the pregnancy (Reese et al., 2020; Albaaj et al., 2023). Strategies for reducing early embryonic mortality by focusing on embryo transfer.

Keywords

embryo mortality, embryo classification, recipient selection, evaluation of corpus luteum, paternal effect

References

Abd El Razek IM, Charpigny G, Kodja S, Marquant-Le Guienne B, Mermillod P, Guyader-Joly C, Humblot P. Differences in lipid composition between in vivo- and in vitro produced bovine embryos. Theriogenology. 2000;53:346.

Abdalla H, Elghafghuf A, Elsohaby I, Nasr MA. Maternal and non-maternal factors associated with late embryonic and early fetal losses in dairy cows. Theriogenology. 2017;100:16-23. http://doi.org/10.1016/j.theriogenology.2017.04.005. PMid:28708529.

Albaaj A, Durocher J, LeBlanc SJ, Dufour S. Meta-analysis of the incidence of pregnancy losses in dairy cows at different stages to 90 days of gestation. JDS Commun. 2023;4(2):144-8. http://doi.org/10.3168/jdsc.2022-0278. PMid:36974208.

Angel-Velez D, De Coster T, Azari-Dolatabad N, Fernández-Montoro A, Benedetti C, Pavani K, Van Soom A, Pascottini OB, Smits K. Embryo morphokinetics derived from fresh and vitrified bovine oocytes predict blastocyst development and nuclear abnormalities. Sci Rep. 2023;13(1):4765. http://doi.org/10.1038/s41598-023-31268-6. PMid:36959320.

Aono FH, Cooke RF, Alfieri AA, Vasconcelos JL. Effects of vaccination against reproductive diseases on reproductive performance of beef cows submitted to fixed-timed AI in Brazilian cow-calf operations. Theriogenology. 2013;79(2):242-8. http://doi.org/10.1016/j.theriogenology.2012.08.008. PMid:23174768.

Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. Dynamic Changes in the Proteome of Early Bovine Embryos Developed In Vivo. Front Cell Dev Biol. 2022;21(10):863700. http://doi.org/10.3389/fcell.2022.863700. PMid:35386205.

Barbosa LFSP, Oliveira WVC, Pereira MHC, Moreira MB, Vasconcelos CGC, Silper BF, Cerri RLA, Vasconcelos JLM. Somatic cell count and type of intramammary infection impacts fertility from in vitro produced embryo transfer. Theriogenology. 2018;108:291-6. http://doi.org/10.1016/j.theriogenology.2017.12.025. PMid:29277069.

Baruselli PS, Ferreira RM, Colli MHA, Elliff FM, Sá Filho MF, Vieira L, Freitas BG. Timed artificial insemination: current challenges and recent advances in reproductive efficiency in beef and dairy herds in Brazil. Anim Reprod. 2018;14:558-71. http://doi.org/10.21451/1984-3143-AR999.

Baruselli PS, Ferreira RM, Sá MF Fo, Nasser LFT, Rodrigues CA, Bo GA. Bovine embryo transfer recipient synchronisation and management in tropical environments. Reprod Fertil Dev. 2010;22(1):67-74. http://doi.org/10.1071/RD09214. PMid:20003847.

Bényei B, Komlósi I, Pécsi A, Pollott G, Marcos CH, de Oliveira Campos A, Lemes MP. The effect of internal and external factors on bovine embryo transfer results in a tropical environment. Anim Reprod Sci. 2006;93(3–4):268-79. http://doi.org/10.1016/j.anireprosci.2005.07.012. PMid:16169166.

Bielanski A, Algire J, Lalonde A, Garceac A. Embryos produced from fertilization with bovine viral diarrhea virus (BVDV)-infected semen and the risk of disease transmission to embryo transfer (ET) recipients and offspring. Theriogenology. 2013;80(5):451-5. http://doi.org/10.1016/j.theriogenology.2013.04.028. PMid:23768649.

Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard MA. Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod. 2002;66(1):38-43. http://doi.org/10.1095/biolreprod66.1.38. PMid:11751261.

Bó GA, Mapletoft RJ. Evaluation and classification of bovine embryos. Animal Reproduction (AR). 2018;10(3):344-8.

Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr. 2010;30(1):315-39. http://doi.org/10.1146/annurev.nutr.012809.104751. PMid:20415585.

Cagnone GL, Sirard MA. Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts. Mol Reprod Dev. 2013;80(4):297-314. http://doi.org/10.1002/mrd.22162. PMid:23426876.

Carter F, Forde N, Duffy P, Wade M, Fair T, Crowe MA, Evans ACO, Kenny DA, Roche JF, Lonergan P. Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod Fertil Dev. 2008;20(3):368-75. http://doi.org/10.1071/RD07204. PMid:18402756.

Carvalho PD, Souza AH, Amundson MC, Hackbart KS, Fuenzalida MJ, Herlihy MM, Ayres H, Dresch AR, Vieira LM, Guenther JN, Fricke PM, Shaver RD, Wiltbank MC. Relationships between Fertility and Postpartum Changes in Body Condition and Body Weight in Lactating Dairy Cows. J Dairy Sci. 2014;97(6):3666-83. http://doi.org/10.3168/jds.2013-7809. PMid:24731646.

Cheng Z, Abudureyimu A, Oguejiofor CF, Ellis R, Barry AT, Chen X, Anstaett OL, Brownlie J, Wathes DC. BVDV alters uterine prostaglandin production during pregnancy recognition in cows. Reproduction. 2016;151(6):605-14. http://doi.org/10.1530/REP-15-0583. PMid:26952097.

Cheung S, Parrella A, Rosenwaks Z, Palermo GD. Genetic and epigenetic profiling of the infertile male. PLoS One. 2019;14(3):e0214275. http://doi.org/10.1371/journal.pone.0214275. PMid:30897172.

Coleman DA, Dailey RA, Leffel RE, Baker RD. Estrous synchronization and establishment of pregnancy in bovine embryo transfer recipients. J Dairy Sci. 1987;70(4):858-66. http://doi.org/10.3168/jds.S0022-0302(87)80084-X. PMid:3473092.

Dahl MO, De Vries A, Galvão KN, Maunsell FP, Risco CA, Hernandez JA. Combined effect of mastitis and parity on pregnancy loss in lactating Holstein cows. Theriogenology. 2020;143:57-63. http://doi.org/10.1016/j.theriogenology.2019.12.002. PMid:31837631.

De Souza GG, Amatti LZ, Garcia LV, Costa LR, Minutti AF, Martins TA, Bogado ALG, Ignácio FS, de Almeida BFM, Garcia JL, de Barros LD. Neospora caninum infection and reproductive problems in dairy cows from Brazil: A case-control study. Vet Parasitol Reg Stud Reports. 2022;28:100683. http://doi.org/10.1016/j.vprsr.2021.100683. PMid:35115122.

Demetrio DG, Santos RM, Demetrio CG, Vasconcelos JL. Factors affecting conception rates following artificial insemination or embryo transfer in lactating Holstein cows. J Dairy Sci. 2007;90(11):5073-82. http://doi.org/10.3168/jds.2007-0223. PMid:17954747.

Demétrio DGB, Benedetti E, Demetrio CGB, Fonseca J, Oliveira M, Magalhaes A, Dos Santos RM. How can we improve embryo production and pregnancy outcomes of Holstein embryos produced in vitro? (12 years of practical results at a California dairy farm). Anim Reprod. 2020;17(3):e20200053. http://doi.org/10.1590/1984-3143-ar2020-0053. PMid:33029219.

Denicol AC, Siqueira LGB. Maternal contributions to pregnancy success: from gamete quality to uterine environment. Anim Reprod. 2023;20(2):e20230085. http://doi.org/10.1590/1984-3143-ar2023-0085.

Dias LRO, Pivato I, Dode MAN. Change in energy metabolism of in vitro produced embryos: an alternative to make them more cryoresistant? Semina: Ciênc Agrár. 2017;38(4): 2237-2253. http://doi.org/10.5433/1679-0359.2017v38n4p2237.

Diskin MG, Morris DG. Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim. 2008;43(Suppl 2):260-7. http://doi.org/10.1111/j.1439-0531.2008.01171.x. PMid:18638133.

Diskin MG, Murphy JJ, Sreenan JM. Embryo survival in dairy cows managed under pastoral conditions. Anim Reprod Sci. 2006;96(3-4):297-311. http://doi.org/10.1016/j.anireprosci.2006.08.008.

Diskin MG, Waters SM, Parr MH, Kenny DA. Pregnancy losses in cattle: potential for improvement. Reprod Fertil Dev. 2016;28(1-2):83-93. http://doi.org/10.1071/RD15366. PMid:27062877.

Driver AM, Peñagaricano F, Huang W, Ahmad KR, Hackbart KS, Wiltbank MC, Khatib H. RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo-and in vitro-derived bovine blastocysts. BMC Genomics. 2012;13(118):1-9. http://doi.org/10.1186/1471-2164-13-118 PMid:22452724.

Duby RT, Hill JL, O’Callaghan D, Overstrom EW, Boland MP. Changes induced in the bovine zona pellucida by ovine and bovine oviducts. Theriogenology. 1997;47(1):332. http://doi.org/10.1016/S0093-691X(97)82459-4. ]

Ealy AD, Seekford ZK. Symposium review: predicting pregnancy loss in dairy cattle. J Dairy Sci. 2019;102(12):11798-804. http://doi.org/10.3168/jds.2019-17176. PMid:31587904.

Erdem H, Karasahin T, Alkan H, Dursun S, Satilmis F, Guler M. Effect of embryo quality and developmental stages on pregnancy rate during fresh embryo transfer in beef heifers. Trop Anim Health Prod. 2020;52(5):2541-7. http://doi.org/10.1007/s11250-020-02287-6 PMid:32445155.

Estrada-Cortés E, Ortiz WG, Chebel RC, Jannaman EA, Moss JI, de Castro FC, Zolini AM, Staples CR, Hansen PJ. Embryo and cow factors affecting pregnancy per embryo transfer for multiple-service, lactating Holstein recipients. Transl Anim Sci. 2019;3(1):60-5. http://doi.org/10.1093/tas/txz009 PMid:32704778.

Fair T, Lonergan P, Dinnyes A, Cottell D, Hyttel P, Ward FA, Boland MP. Ultrastructure of bovine blastocysts following cryopreservation: effect of method of embryo production on blastocyst quality. Mol Reprod Dev. 2001;58:186-95. http://doi.org/10.1002/1098-2795(200102)58:2<186::AID-MRD8>3.0.CO;2-N. PMid:11139231.

Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology. 2001;55(1):151-70. http://doi.org/10.1016/S0093-691X(00)00452-0. PMid:11198080.

Farin PW, Piedrahita JA, Farin CE. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology. 2006;65(1):178-91. http://doi.org/10.1016/j.theriogenology.2005.09.022. PMid:16266745.

Farin PW, Slenning BD, Britt JH. Estimates of pregnancy outcomes based on selection of bovine embryos produced in vivo or in vitro. Theriogenology. 1999;52(4):659-70. http://doi.org/10.1016/S0093-691X(99)00160-0. PMid:10734364.

Fernandez-Novo A, Fargas O, Loste JM, Sebastian F, Perez-Villalobos N, Pesantez-Pacheco JL, Patron-Collantes R, Astiz S. Pregnancy loss (28-110 days of pregnancy) in holstein cows: a retrospective study. Animals (Basel). 2020;10(6):925. http://doi.org/10.3390/ani10060925. PMid:32466555.

Ferraz PA, Burnley C, Karanja J, Viera-Neto A, Santos JE, Chebel RC, Galvão KN. Factors affecting the success of a large embryo transfer program in Holstein cattle in a commercial herd in the southeast region of the United States. Theriogenology. 2016;86(7):1834-41. http://doi.org/10.1016/j.theriogenology.2016.05.032 PMid:27364084.

Fontes PLP, Oosthuizen N. Applied use of Doppler ultrasonography in bovine reproduction. Front. Anim. Sci. 2022;3:912854. http://doi.org/10.3389/fanim.2022.912854.

Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina SC, Fadini R, Dal Canto M, Renzini MM, Albertini DF, Luciano AM. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biol Reprod. 2014;91(3):61. http://doi.org/10.1095/biolreprod.114.118869. PMid:25078681.

Franco G, Reese S, Poole R, Rhinehart J, Thompson K, Cooke R, Pohler K. Sire contribution to pregnancy loss in different periods of embryonic and fetal development of beef cows. Theriogenology. 2020;154:84-91. http://doi.org/10.1016/j.theriogenology.2020.05.021. PMid:32535394.

Franco GA, Peres RFG, Martins CFG, Reese ST, Vasconcelos JLM, Pohler KG. Sire contribution to pregnancy loss and pregnancy-associated glycoprotein production in Nelore cows. J Anim Sci. 2018;96(2):632-40. http://doi.org/10.1093/jas/sky015. PMid:29518245.

Fray MD, Mann GE, Clarke MC, Charleston B. Bovine viral diarrhoea virus: its effects on ovarian function in the cow. Vet Microbiol. 2000;77(1-2):185-94. http://doi.org/10.1016/S0378-1135(00)00275-3. PMid:11042412.

Geary TW, Burns GW, Moraes JG, Moss JI, Denicol AC, Dobbs KB, Ortega MS, Hansen PJ, Wehrman ME, Neibergs H, O’Neil E, Behura S, Spencer TE. Identification of Beef Heifers with Superior Uterine Capacity for Pregnancy. Biol Reprod. 2016;95(2):47. http://doi.org/10.1095/biolreprod.116.141390. PMid:27417907.

Gómez-Seco C, Alegre B, Martínez-Pastor F, Prieto JG, González-Montaña JR, Alonso ME, Domínguez JC. Evolution of the corpus luteum volume determined ultrasonographically and its relation to the plasma progesterone concentration after artificial insemination in pregnant and non-pregnant dairy cows. Vet Res Commun. 2017;41(3):183-8. http://doi.org/10.1007/s11259-017-9685-x. PMid:28337578.

Gonella-Diaza AM, Silveira Mesquita F, Lopes E, Ribeiro da Silva K, Cogliati B, De Francisco Strefezzi R, Binelli M. Sex steroids drive the remodeling of oviductal extracellular matrix in cattle. Biol Reprod. 2018;99(3):590-9. http://doi.org/10.1093/biolre/ioy083. PMid:29659700.

González Altamiranda EA, Arias ME, Kaiser GG, Mucci NC, Odeón AC, Felmer RN. Upregulation of interferon-alpha gene in bovine embryos produced in vitro in response to experimental infection with noncytophatic bovine-viral-diarrhea virus. Mol Biol Rep. 2020;47(12):9959-65. http://doi.org/10.1007/s11033-020-05958-7. PMid:33226564.

Grazul-Bilska AT, Johnson ML, Borowicz PP, Minten M, Bilski JJ, Wroblewski R, Velimirovich M, Coupe LR, Redmer DA, Reynolds LP. Placental development during early pregnancy in sheep: cell proliferation, global methylation, and angiogenesis in the fetal placenta. Reproduction. 2011;141(4):529-40. http://doi.org/10.1530/REP-10-0505 PMid:21273368.

Grimard B, Freret S, Chevallier A, Pinto A, Ponsart C, Humblot P. Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Anim Reprod Sci. 2006;91(1-2):31-44. http://doi.org/10.1016/j.anireprosci.2005.03.003. PMid:16310097.

Grooms DL, Brock KV, Pate JL, Day ML. Changes in ovarian follicles following acute infection with bovine viral diarrhea virus. Theriogenology. 1998;49(3):595-605. http://doi.org/10.1016/S0093-691X(98)00010-7. PMid:10732038.

Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell. 2004;6(1):117-31. http://doi.org/10.1016/S1534-5807(03)00373-3 PMid:14723852.

Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020;98(11):skaa288. http://doi.org/10.1093/jas/skaa288. PMid:33141879.

Hansen TR, Smirnova NP, Van Campen H, Shoemaker ML, Ptitsyn AA, Bielefeldt-Ohmann H. Maternal and fetal response to fetal persistent infection with bovine viral diarrhea virus. Am J Reprod Immunol. 2010;64(4):295-306. http://doi.org/10.1111/j.1600-0897.2010.00904.x. PMid:20678166.

Hasler JF, McCauley AD, Lathrop WF, Foote RH. Effect of donor-embryo-recipient interactions on pregnancy rate in a large-scale bovine embryo transfer program. Theriogenology. 1987;27(1):139-68. http://doi.org/10.1016/0093-691X(87)90075-6.

Hasler JF. Factors affecting frozen and fresh embryo transfer pregnancy rates in cattle. Theriogenology. 2001;56(9):1401-15. http://doi.org/10.1016/S0093-691X(01)00643-4 PMid:11768807.

Hernández-Cerón J, Chase CC Jr, Hansen PJ. Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds. J Dairy Sci. 2004;87(1):53-8. http://doi.org/10.3168/jds.S0022-0302(04)73141-0. PMid:14765810.

Herrera C. Clinical Applications of Preimplantation Genetic Testing in Equine, Bovine, and Human Embryos. J Equine Vet Sci. 2016;41:29-34. http://doi.org/10.1016/j.jevs.2016.04.002.

IETS. Statistics of embryo collection and transfer in domestic farm animals. Embryo transfer News Letter, 39;2020.

Jena SR, Nayak J, Kumar S, Kar S, Dixit A, Samanta L. Paternal contributors in recurrent pregnancy loss: cues from comparative proteome profiling of seminal extracellular vesicles. Mol Reprod Dev. 2021;88(1):96-112. http://doi.org/10.1002/mrd.23445. PMid:33345401.

Jones AL, Lamb GC. Nutrition, synchronization, and management of beef embryo transfer recipients. Theriogenology. 2008;69(1):107-15. http://doi.org/10.1016/j.theriogenology.2007.09.004 PMid:17964640.

Kafi M, McGowan MR, Kirkland PD, Jillella D. The effect of bovine pestivirus infection on the superovulatory response of Friesian heifers. Theriogenology. 1997;48(6):985-96. http://doi.org/10.1016/S0093-691X(97)00325-7. PMid:16728188.

Kasimanickam R, Kasimanickam V, Gold J, Moore D, Kastelic JP, Pyrdek D, Ratzburg K. Injectable or transdermal flunixin meglumine improves pregnancy rates in embryo transfer recipient beef cows without altering returns to estrus. Theriogenology. 2019;140:8-17. http://doi.org/10.1016/j.theriogenology.2019.08.011 PMid:31421533.

Kasimanickam RK, Hall JB, Estill CT, Kastelic JP, Joseph C, Abdel Aziz RL, Nak D. Flunixin meglumine improves pregnancy rate in embryo recipient beef cows with an excitable temperament. Theriogenology. 2018;107:70-7. http://doi.org/10.1016/j.theriogenology.2017.10.043 PMid:29132037.

Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82(E-Suppl):E14-23. https://doi.org/10.2527/2004.8213_supplE14x.

Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, Khatib H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017;18(1):280. http://doi.org/10.1186/s12864-017-3673-y. PMid:28381255.

Lima ACND, Pereira ETN, Almeida IDC, Xavier ED, Oliveira DCF, Almeida ACD. Reproductive disorders and reconception of beef cows subjected to timed artificial insemination. Cienc Anim Bras. 2022;23: e70384. http://doi.org/10.1590/1809-6891v22e-70384.

Lonergan P, Rizos D, Ward F, Boland MP. Factors influencing oocyte and embryo quality in cattle. Reprod Nutr Dev. 2001;41(5):427-37. http://doi.org/10.1051/rnd:2001142. PMid:11993800.

López-Damián EP, Galina CS, Merchant H, Cedillo-Pelaez C, Asprón M. (2008). Assessment of Bos taurus embryos comparing stereoscopic microscopy and transmission electron microscopy. Journal of Cell and Animal Biology. 2008;2(3):072-078.

Lovarelli D, Bacenetti J, Guarino M. A review on dairy cattle farming: is precision livestock farming the compromise for an environmental, economic and social sustainable production? J Clean Prod. 2020;262:121409. http://doi.org/10.1016/j.jclepro.2020.121409.

Lowman BG, Scott NA, Somerville SH. Condition Scoring of Cattle. Edinburgh: East of Scotland College of Agriculture. Animal Production, Advisory and Development Department Edinburgh. Edinburgh School of Agriculture Bulletin, n. 6; 1976.

Magata F. Time-lapse monitoring technologies for the selection of bovine in vitro fertilized embryos with high implantation potential. J Reprod Dev. 2023;69(2):57-64. http://doi.org/10.1262/jrd.2022-131. PMid:36775299.

Martins T, Sponchiado M, Ojeda-Rojas OA, Gonella-Diaza AM, Batista EOS, Cardoso BO, Rocha CC, Basso AC, Binelli M. Exacerbated conceptus signaling does not favor establishment of pregnancy in beef cattle. J Anim Sci Biotechnol. 2018;9(1):87. http://doi.org/10.1186/s40104-018-0302-9. PMid:30555692.

Melo GD, Mello BP, Ferreira CA, Filho CASG, Rocha CC, Silva AG, Reese ST, Madureira EH, Pohler KG, Pugliesi G. Applied use of interferon-tau stimulated genes expression in polymorphonuclear cells to detect pregnancy compared to other early predictors in beef cattle. Theriogenology. 2020;152:94-105. http://doi.org/10.1016/j.theriogenology.2020.04.001. PMid:32387553.

Melo-Sterza FA, Poehland R. Lipid Metabolism in Bovine Oocytes and Early Embryos under In Vivo, In Vitro, and Stress Conditions. Int J Mol Sci. 2021;22(7):3421. http://doi.org/10.3390/ijms22073421. PMid:33810351.

Middleton EL, Minela T, Pursley JR. The high-fertility cycle: how timely pregnancies in one lactation may lead to less body condition loss, fewer health issues, greater fertility, and reduced early pregnancy losses in the next lactation. J Dairy Sci. 2019;102(6):5577-87. http://doi.org/10.3168/jds.2018-15828. PMid:30904310.

Misirlioglu M, Page GP, Sagirkaya H, Kaya A, Parrish JJ, First NL, Memili E. Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc Natl Acad Sci USA. 2006;103(50):18905-10. http://doi.org/10.1073/pnas.0608247103. PMid:17142320.

Moraes JGN, Behura SK, Geary TW, Hansen PJ, Neibergs HL, Spencer TE. Uterine influences on conceptus development in fertility-classified animals. Proc Natl Acad Sci USA. 2018;115(8):E1749-E1758. http://doi.org/10.1073/pnas.1721191115 PMid:29432175.

Morotti F, Sanches BV, Pontes JH, Basso AC, Siqueira ER, Lisboa LA, Seneda MM. Pregnancy rate and birth rate of calves from a large-scale IVF program using reverse-sorted semen in Bos indicus, Bos indicus-taurus, and Bos taurus cattle. Theriogenology. 2014;81(5):696-701. http://doi.org/10.1016/j.theriogenology.2013.12.002 PMid:24412681.

Mullaart E, Wells D. Animal Biotechnology 2: Emerging Breeding Technologies. Springer: Berlin, Germany; 2018. Embryo biopsies for genomic selection; p. 81–94. http://doi.org/10.1007/978-3-319-92348-2_5.

Nation DP, Malmo J, Davis GM, Macmillan KL. Accuracy of bovine pregnancy detection using transrectal ultrasonography at 28 to 35 days after insemination. Aust Vet J. 2003;81(1-2):63-5. http://doi.org/10.1111/j.1751-0813.2003.tb11435.x. PMid:15084014.

Ortega MS, Moraes JGN, Patterson DJ, Smith MF, Behura SK, Poock S, Spencer TE. Influences of sire conception rate on pregnancy establishment in dairy cattle. Biol Reprod. 2018;99(6):1244-54. http://doi.org/10.1093/biolre/ioy141. PMid:29931362.

Park J, Lee W, Saadelin IM, Bang S, Lee S, Yi J, Cho J. Improved pregnancy rate and sex ratio in fresh/frozen in vivo derived embryo transfer of Hanwoo (Bos taurus coreanae) cows. J Anim Sci Technol. 2023;65(4):779-91. http://doi.org/10.5187/jast.2023.e69 PMid:37970502.

Paulson EE, Fishman EL, Schultz RM, Ross PJ. Embryonic microRNAs are essential for bovine preimplantation embryo development. Proc Natl Acad Sci USA. 2022;119(45):e2212942119. http://doi.org/10.1073/pnas.2212942119. PMid:36322738.

Pawlak P, Lipinska P, Sell-Kubiak E, Kajdasz A, Derebecka N, Warzych E. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism. Dev Biol. 2024;509:51-8. http://doi.org/10.1016/j.ydbio.2024.02.004. PMid:38342400.

Pegorer MF, Vasconcelos JL, Trinca LA, Hansen PJ, Barros CM. Influence of sire and sire breed (Gyr versus Holstein) on establishment of pregnancy and embryonic loss in lactating Holstein cows during summer heat stress. Theriogenology. 2007;67(4):692-7. http://doi.org/10.1016/j.theriogenology.2006.09.042. PMid:17118436.

Pellegrino CA, Morotti F, Untura RM, Pontes JH, Pellegrino MF, Campolina JP, Seneda MM, Barbosa FA, Henry M. Use of sexed sorted semen for fixed-time artificial insemination or fixed-time embryo transfer of in vitro-produced embryos in cattle. Theriogenology. 2016;86(3):888-93. http://doi.org/10.1016/j.theriogenology.2016.03.010 PMid:27068357.

Pereira MHC, Wiltbank MC, Vasconcelos JLM. Expression of estrus improves fertility and decreases pregnancy losses in lactating dairy cows that receive artificial insemination or embryo transfer. J Dairy Sci. 2016;99(3):2237-47. http://doi.org/10.3168/jds.2015-9903. PMid:26723130.

Perkel KJ, Tscherner A, Merrill C, Lamarre J, Madan P. The ART of selecting the best embryo: a review of early embryonic mortality and bovine embryo viability assessment methods. Mol Reprod Dev. 2015;82(11):822-38. http://doi.org/10.1002/mrd.22525. PMid:26184077.

Perry GA, Smith MF, Lucy MC, Verde JA, Parques TE, MacNeil MD, Roberts AJ, Geary TW. Relationship between follicle size at insemination and pregnancy success. Proc Natl Acad Sci USA. 2005;102(14):5268-73. http://doi.org/10.1073/pnas.0501700102. PMid:15795381.

Pessoa GA, Martini AP, Trentin JM, Dalcin VC, Leonardi CEP, Vogel FSF, Sá MF Fo, Rubin MIB, Silva CAM. Impact of spontaneous Neospora caninum infection on pregnancy loss and subsequent pregnancy in grazing lactating dairy cows. Theriogenology. 2016;85(3):519-527. http://doi.org/10.1016/j.theriogenology.2015.09.034

Pinaffi FLV, Santos ES, Silva MG, Maturana Filho M, Madureira EH, Silva LA. Follicle and corpus luteum size and vascularity as predictors of fertility at the time of artificial insemination and embryo transfer in beef cattle. Pesq Vet Bras. 2015;35(5):470-6. http://doi.org/10.1590/S0100-736X2015000500015.

Pohler KG, Geary TW, Johnson CL, Atkins JA, Jinks EM, Busch DC, Green JA, MacNeil MD, Smith MF. Circulating bovine pregnancy associated glycoproteins are associated with late embryonic/fetal survival but not ovulatory follicle size in suckled beef cows. J Anim Sci. 2013;91(9):4158-67. http://doi.org/10.2527/jas.2013-6348. PMid:23825331.

Pohler KG, Oliveira RV Fo. Impact of the sire on pregnancy loss. Vet Clin North Am Food Anim Pract. 2024;40(1):121-9. http://doi.org/10.1016/j.cvfa.2023.08.006. PMid:37884437.

Pohler KG, Peres RFG, Green JA, Graff H, Martins T, Vasconcelos JLM, Smith MF. Use of bovine pregnancy-associated glycoproteins to predict late embryonic mortality in postpartum Nelore beef cows. Theriogenology. 2016;85(9):1652-9. http://doi.org/10.1016/j.theriogenology.2016.01.026. PMid:26928645.

Pohler KG, Reese ST, Franco-Johannsen GA, de Melo GD, Oliveira R Fo, Poole RK. 265 Awardee Talk: maternal and paternal contributions to fertility. J Anim Sci. 2021;99(Suppl 3):137-8. http://doi.org/10.1093/jas/skab235.252.

Pontes JH, Melo Sterza FA, Basso AC, Ferreira CR, Sanches BV, Rubin KC, Seneda MM. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology. 2011;75(9):1640-6. http://doi.org/10.1016/j.theriogenology.2010.12.026. PMid:21334055.

Pugliesi G, Dalmaso de Melo G, Silva JB, Carvalhêdo AS, Lopes E, Siqueira E Fo, Silva LA, Binelli M. Use of color-Doppler ultrasonography for selection of recipients in timed-embryo transfer programs in beef cattle. Theriogenology. 2019;135:73-9. http://doi.org/10.1016/j.theriogenology.2019.06.006. PMid:31203090.

Pugliesi G, Melo GD, Ataíde GA Jr, Pellegrino CAG, Silva JB, Rocha CC, Motta IG, Vasconcelos JLM, Binelli M. Use of Doppler ultrasonography in embryo transfer programs: feasibility and field results. Anim Reprod. 2018;15(3):239-46. http://doi.org/10.21451/1984-3143-AR2018-0059. PMid:34178147.

Pugliesi G, Miagawa BT, Paiva YN, França MR, Silva LA, Binelli M. Conceptus-induced changes in the gene expres¬sion of blood immune cells and the ultrasound-accessed luteal function in beef cattle: how early can we detect pregnancy? Biol Reprod. 2014;91(4):95. http://doi.org/10.1095/biolreprod.114.121525. PMid:25210129.

Putney DJ, Thatcher WW, Drost M, Wright JM, DeLorenzo MA. Influence of environmental temperature on reproductive performance of bovine embryo donors and recipients in the southwest region of the United States. Theriogenology. 1988;30(5):905-22. http://doi.org/10.1016/S0093-691X(88)80053-0. PMid:16726533.

Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel). 2023;13(13):2102. http://doi.org/10.3390/ani13132102. PMid:37443900.

Rahim Tayefeh A, Talebkhan Garoussi M, Heidari F, Bakhshesh M, Shirazi A, Vahidi M. Effect of bovine viral diarrhea virus biotypes exposure on bovine gametes in early embryonic development in vitro. Vet Res Forum. 2023;14(4):207-12. http://doi.org/10.30466/vrf.2022.555199.3504. PMid:37181860.

Reese ST, Franco GA, Poole RK, Hood R, Fernadez Montero L, Oliveira Filho RV, Cooke RF, Pohler KG. Pregnancy loss in beef cattle: A meta-analysis. Anim Reprod Sci. 2020;212:106251. http://doi.org/10.1016/j.anireprosci.2019.106251. PMid:31864492.

Ribeiro ES, Bruno RGS, Farias AM, Hernández-Rivera JA, Gomes GC, Surjus R, Becker LFV, Birt A, Ott TL, Branen JR, Sasser RG, Keisler DH, Thatcher WW, Bilby TR, Santos JEP. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biol Reprod. 2014;90(1):10-2. http://doi.org/10.1095/biolreprod.113.114694. PMid:24285716.

Ribeiro ES, Gomes G, Greco LF, Cerri RLA, Vieira-Neto A, Monteiro PLJ Jr, Lima FS, Bisinotto RS, Thatcher WW, Santos JEP. Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J Dairy Sci. 2016;99(3):2201-20. http://doi.org/10.3168/jds.2015-10337. PMid:26723113.

Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002;61(2):234-48. http://doi.org/10.1002/mrd.1153. PMid:11803560.

Rocha JC, Passalia FJ, Matos FD, Takahashi MB, Ciniciato DS, Maserati MP, Alves MF, de Almeida TG, Cardoso BL, Basso AC, Nogueira MFG. A Method Based on Artificial Intelligence To Fully Automatize The Evaluation of Bovine Blastocyst Images. Sci Rep. 2017;7(1):7659. http://doi.org/10.1038/s41598-017-08104-9. PMid:28794478.

Rodríguez LEQ, Domínguez G, Alvarado Pinedo MF, Travería GE, Moré G, Campero LM, de la Sota RL, Madoz LV, Giuliodori MJ. Association of bovine viral diarrhea virus, bovine herpesvirus 1, and Neospora caninum with late embryonic losses in highly supplemented grazing dairy cows. Theriogenology. 2022;194:126-32. http://doi.org/10.1016/j.theriogenology.2022.10.002. PMid:36242875.

Rossignolo EAA, Silva NCD, Stolf RL, Cavalieri FLB, Colombo AHB, Andreazzi MA, Seneda MM, Morotti F. Evaluation of hCG as gonadotropic support to timed embryo transfer protocol in beef cattle. Theriogenology. 2023;195:24-30. http://doi.org/10.1016/j.theriogenology.2022.10.004. PMid:36274393.

Ruebel ML, Martins LR, Schall PZ, Pursley JR, Latham KE. Effects of early lactation body condition loss in dairy cows on serum lipid profiles and on oocyte and cumulus cell transcriptomes. J Dairy Sci. 2022;105(10):8470-84. http://doi.org/10.3168/jds.2022-21919. PMid:35940920.

Rufino FA, Seneda MM, Alfieri AA. Impacto do herpesvírus bovino 1 e do vírus da diarréia viral bovina na transferência de embriões. Arch Vet Sci. 2006;11(1):78-84. http://doi.org/10.5380/avs.v11i1.5606.

Saadi HAS, Vigneault C, Sargolzaei M, Gagné D, Fournier É, de Montera B, Chesnais J, Blondin P, Robert C. Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates. BMC Genomics. 2014;15(1):889. http://doi.org/10.1186/1471-2164-15-889. PMid:25305778.

Santos GMG, Junior LB, Silva-Santos KC, Dias JHA, Dias IS, Seneda MM, Morotti F. Conception rate and pregnancy loss in fixed-time cattle embryo transfer programs are related to the luteal blood perfusion but not to the corpus luteum size. Theriogenology. 2023;210:251-5. http://doi.org/10.1016/j.theriogenology.2023.07.039. PMid:37549464.

Santos JEP, Thatcher WW, Chebel RC, Cerri RLA, Galvão KN. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim Reprod Sci. 2004;82–83:513-35. http://doi.org/10.1016/j.anireprosci.2004.04.015. PMid:15271477.

Sartori R, Sartor-Bergfelt R, Mertens SA, Guenther JN, Parrish JJ, Wiltbank MC. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J Dairy Sci. 2002;85(11):2803-12. http://doi.org/10.3168/jds.S0022-0302(02)74367-1. PMid:12487447.

Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep. 2017;7(1):42392. http://doi.org/10.1038/srep42392. PMid:28276431.

Siqueira LGB, Areas VS, Ghetti AM, Fonseca JF, Palhao MP, Fernandes CAC, Viana JHM. Color doppler flow imaging for the early detection of nonpregnant cattle at 20 days after timed artificial insemination. J Dairy Sci. 2013;96(10):6461-72. http://doi.org/10.3168/jds.2013-6814. PMid:23958005.

Smirnova NP, Webb BT, Bielefeldt-Ohmann H, Van Campen H, Antoniazzi AQ, Morarie SE, Hansen TR. Development of fetal and placental innate immune responses during establishment of persistent infection with bovine viral diarrhea virus. Virus Res. 2012;167(2):329-36. http://doi.org/10.1016/j.virusres.2012.05.018. PMid:22659490.

Smith BD, Poliakiwski B, Polanco O, Singleton S, de Melo GD, Muntari M, Oliveira Filho RV, Pohler KG. Decisive points for pregnancy losses in beef cattle. Reprod Fertil Dev. 2022;35(2):70-83. http://doi.org/10.1071/RD22206. PMid:36592980.

Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence. PLoS One. 2013;8(11):e78505. http://doi.org/10.1371/journal.pone.0078505. PMid:24223816.

Spitzer JC, Morrison DG, Wettemann RP, Faulkner LC. Reproductive responses and calf birth and weaning weights as affected by body condition at parturition and postpartum weight gain in primiparous beef cows. J Anim Sci. 1995;73(5):1251-7. http://doi.org/10.2527/1995.7351251x. PMid:7665355.

Starbuck MJ, Dailey RA, Inskeep EK. Factors affecting retention of early pregnancy in dairy cattle. Anim Reprod Sci. 2004;84(1-2):27-39. http://doi.org/10.1016/j.anireprosci.2003.12.009. PMid:15302385.

Stewart BM, Block J, Morelli P, Navarette AE, Amstalden M, Bonilla L, Hansen PJ, Bilby TR. Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. J Dairy Sci. 2011;94(7):3437-45. http://doi.org/10.3168/jds.2010-4008. PMid:21700029.

Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev. 2017;63(4):353-7. http://doi.org/10.1262/jrd.2017-041. PMid:28552887.

Surani MA, Barton SC, Norris ML. Influence of parental chromosomes on spatial specificity in androgenetic----parthenogenetic chimaeras in the mouse. Nature. 1987;326(6111):395-7. http://doi.org/10.1038/326395a0. PMid:3561479.

Szelényi Z, Szenci O, Bodó S, Kovács L. Noninfectious causes of pregnancy loss at the late embryonic/early fetal stage in dairy cattle. Animals (Basel). 2023;13(21):3390. http://doi.org/10.3390/ani13213390. PMid:37958145.

Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev. 1990;26(1):90-100. http://doi.org/10.1002/mrd.1080260113. PMid:2189447.

Thangavelu G, Gobikrushanth M, Colazo MG, Ambrose DJ. Pregnancy per Artificial Insemination and Pregnancy Loss in Lactating Dairy Cows of a Single Herd Following Timed Artificial Insemination or Insemination at Detected Estrus. Can J Anim Sci. 2015;95(3):383-8. http://doi.org/10.4141/cjas-2014-122.

Thomson SP, Holmes RJ, Landes PT, Allworth MB. Assessment and selection of the recipient cows’ corpus luteum at the time of embryo transfer, and its influence on conception rate. Aust Vet J. 2021;99(7):288-92. http://doi.org/10.1111/avj.13068. PMid:33913151.

USDA. NAHMS Beef 2007-2008. Fort Collins, CO: USDA–APHIS–VS–CEAH–NAHMS; 2010.

USDA. NAHMS dairy 2007 part IV: reference of dairy cattle health and management practices in the United States. Fort Collins: USDA–APHIS–VS–CEAH–NAHMS; 2009. p. 33-43.

Velho GDS, Rovani MT, Ferreira R, Gasperin BG, Dalto AGC. Blood perfusion and diameter of bovine corpus luteum as predictors of luteal function in early pregnancy. Reprod Domest Anim. 2022;57(3):246-52. http://doi.org/10.1111/rda.14046. PMid:34773304.

Villa L, Gazzonis AL, Allievi C, Zanzani SA, Mortarino M, Manfredi MT. Prevalence of Neospora caninum antibodies in fattening pigs and sows from intensive farms in northern Italy. Parasitol Res. 2022;121(3):1033-40. http://doi.org/10.1007/s00436-022-07457-z. PMid:35118513.

Wallace RM, Pohler KG, Smith MF, Green JA. Placental PAGs: gene origins, expression patterns, and use as markers of pregnancy. Reproduction. 2015;149(3):R115-26. http://doi.org/10.1530/REP-14-0485. PMid:25661256.

Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, Ochoa JC, Santos JE, Sartori R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology. 2016;86(1):239-53. http://doi.org/10.1016/j.theriogenology.2016.04.037. PMid:27238438.

Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci. 2022;100(7):skac091. http://doi.org/10.1093/jas/skac091. PMid:35772761.

Yoon SB, Choi SA, Sim BW, Kim JS, Mun SE, Jeong PS, Yang HJ, Lee Y, Park YH, Song BS, Kim YH, Jeong KJ, Huh JW, Lee SR, Kim SU, Chang KT. Developmental Competence of Bovine Early Embryos Depends on the Coupled Response Between Oxidative and Endoplasmic Reticulum Stress. Biol Reprod. 2014;90(5):104. http://doi.org/10.1095/biolreprod.113.113480. PMid:24695629.

Zobel R, Tkalčić S, Pipal I, Buić V. Incidence and factors associated with early pregnancy losses in Simmental dairy cows. Anim Reprod Sci. 2011;127(3-4):121-5. http://doi.org/10.1016/j.anireprosci.2011.07.022. PMid:21906893.
 


Submitted date:
03/15/2024

Accepted date:
04/29/2024

66b6464ca953952667226ed2 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections