Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0035
Animal Reproduction (AR)
ORIGINAL ARTICLE

Reactive oxygen species attenuation improves the quality of vitrified-warmed bovine embryos

Viviane Luzia da Silva Feuchard; Clara Slade Oliveira; Naiara Zoccal Saraiva; Carolina Capobiango Romano Quintão; Leticia Zoccolaro Oliveira

Downloads: 0
Views: 20

Abstract

The aim of this study was to investigate the effects of modulating reactive oxygen species (ROS) in vitrified bovine in vitro produced (IVP) embryos. In experiment I we compared ROS production in fresh and vitrified-warmed blastocysts. In experiment II we evaluated the effects of antioxidant supplementation (100 μM of 2-mercaptoethanol; BME; 0 h to 2 h during warming) on ROS levels in vitrified-warmed blastocysts, and in experiment III we compared the development of fresh and vitrified-warmed blastocysts in the presence (BME) or absence (Control) of antioxidant (100 μM BME; 0 h to 48 h during warming). Higher ROS production (Fresh: 68.48 ± 7.92 vs Vitrified: 123.53 ± 13.15; P<0.05) and lower cell number was observed in vitrified compared to fresh embryos (Fresh: 123.01 ± 5.67 vs Vitrified: 103.04 ± 4.25; P<0.05). Antioxidant supplementation reduced ROS levels (Vitrified: 38.24 ± 1.27 vs. Vitrified/BME: 33.54 ± 1.08; P<0.05) and increased cell number in treated embryos (Vitrified: 100.65 ± 3.98 vs. Vitrified/BME: 112.95 ± 3.72; P<0.05). No differences were observed in the re-expansion rates of vitrified embryos cultured in the absence and presence of BME at 0, 2, and 4 h after warming (P>0.05). The embryo hatching rate did not differ (P>0.05) among embryos from the fresh, vitrified and vitrified/BME groups. However, the total cell numbers were higher (P<0.05) in vitrified embryos supplemented with BME (143.02 ± 6.97) than in vitrified embryos without BME (113.25 ± 5.09) but similar (P>0.05) to that observed in fresh embryos cultured with (150.54 ± 8.99) and without BME (142.71 ± 13.60). It was concluded that the vitrification and warming processes increased ROS levels in blastocysts and its attenuation with BME antioxidant improved embryonic quality.

Keywords

antioxidant, blastocyst, oxidative stress, vitrification

References

Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R, Durairajanayagam D, Henkel R, Saleh R. Oxidative stress and assisted reproduction: a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants. 2022;11(3):477. http://doi.org/10.3390/antiox11030477. PMid:35326126.

Alshaheen TA, Awaad MHH, Mehaisen GMK. Leptin improves the in vitro development of preimplantation rabbit embryos under oxidative stress of cryopreservation. PLoS One. 2021;16(2):e0246307. http://doi.org/10.1371/journal.pone.0246307. PMid:33529203.

Amin A, Gad A, Salilew-Wondim D, Prastowo S, Held E, Hoelker M, Rings F, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D. Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol Reprod Dev. 2014;81(6):497-513. http://doi.org/10.1002/mrd.22316. PMid:25057524.

Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55(1):1-23. http://doi.org/10.1007/s12013-009-9054-7. PMid:19548119.

Caamaño JN, Gómez E, Trigal B, Muñoz M, Carrocera S, Martín D, Díez C. Survival of vitrified in vitro-produced bovine embryos after a one-step warming in-straw cryoprotectant dilution procedure. Theriogenology. 2015;83(5):881-90. http://doi.org/10.1016/j.theriogenology.2014.11.021. PMid:25542458.

Dabrowski A, Boguslowicz C, Dabrowska M, Tribillo I, Gabryelewicz A. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas. 2000;21(4):376-84. http://doi.org/10.1097/00006676-200011000-00008. PMid:11075992.

Dalcin L, Silva RC, Paulini F, Silva BD, Neves JP, Lucci CM. Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology. 2013;67(2):137-45. http://doi.org/10.1016/j.cryobiol.2013.05.012. PMid:23770514.

De Lima CB, Dos Santos ÉC, Ispada J, Fontes PK, Nogueira MFG, Dos Santos CMD, Milazzotto MP. The dynamics between in vitro culture and metabolism: embryonic adaptation to environmental changes. Sci Rep. 2020;10(1):15672. http://doi.org/10.1038/s41598-020-72221-1. PMid:32973241.

De Matos DG, Furnus CC. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology. 2000;53(3):761-71. http://doi.org/10.1016/S0093-691X(99)00278-2. PMid:10735042.

De Mattos K, Pena-Bello CA, Campagnolo K, Borba de Oliveira G, Ticiani E, Pinzón-Osorio CA, da Silva Feijó AL, da Silva Ferreira H, Rodrigues JL, Bertolini M, Mezzallira A, de Souza Ribeiro E. β-Mercaptoethanol in culture medium improves cryotolerance ofin vitro-produced bovine embryos. Zygote. 2022;30(6):830-40. http://doi.org/10.1017/S0967199422000338. PMid:36148782.

Fabra MC, Anchordoquy JP, Carranza-Martín AC, Farnetano N, Anchordoquy JM, Furnus CC, Nikoloff N. Alpha-lipoic acid improves bovine preimplantation blastocyst quality and cryotolerance. Theriogenology. 2023;198:61-8. http://doi.org/10.1016/j.theriogenology.2022.12.025. PMid:36563629.

Fryc K, Nowak A, Kij-Mitka B, Kochan J, Bartlewski PM, Murawski M. Morphokinetic changes and apoptotic cell death in vitrified and non-vitrified in vitro-produced ovine embryos. Reprod Biol. 2023;23(2):100750. http://doi.org/10.1016/j.repbio.2023.100750. PMid:36857927.

Gao C, Han HB, Tian XZ, Tan DX, Wang L, Zhou GB, Zhu SE, Liu GS. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res. 2012;52(3):305-11. http://doi.org/10.1111/j.1600-079X.2011.00944.x. PMid:22225541.

González-Rodríguez N, Martínez-Rodero I, Scherzer J, Jung S, Reichenbach M, Zablotski Y, Otzdorff C, Zerbe H, Mogas T. Vitrification and in-straw warming do not affect pregnancy rates of biopsied bovine embryos. Theriogenology. 2022;191:221-30. http://doi.org/10.1016/j.theriogenology.2022.07.021. PMid:35998405.

Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996;271(8):4138-42. http://doi.org/10.1074/jbc.271.8.4138. PMid:8626753.

Hara T, Kin A, Aoki S, Nakamura S, Shirasuna K, Kuwayama T, Iwata H. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS One. 2018;13(10):e0204571. http://doi.org/10.1371/journal.pone.0204571. PMid:30335749.

Huang Y, Cheng Y, Zhang M, Chen Y, Zhou R, Lin D, Guo X. Effect of repeated vitrification of human embryos on pregnancy and neonatal outcomes. J Ovarian Res. 2024;17(1):51. http://doi.org/10.1186/s13048-024-01370-y. PMid:38402194.

Issels RD, Nagele A, Eckert KG, Wilmanns W. Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and N-acetylcysteine. Biochem Pharmacol. 1988;37(5):881-8. http://doi.org/10.1016/0006-2952(88)90176-1. PMid:3345201.

Jamil M, Debbarh H, Aboulmaouahib S, Aniq Filali O, Mounaji K, Zarqaoui M, Saadani B, Louanjli N, Cadi R. Reactive oxygen species in reproduction: harmful, essential or both? Zygote. 2020;28(4):255-69. http://doi.org/10.1017/S0967199420000179. PMid:32340646.

Kang HG, Lee S, Jeong PS, Kim MJ, Park SH, Joo YE, Park SH, Song BS, Kim SU, Kim MK, Sim BW. Lycopene Improves In Vitro Development of Porcine Embryos by Reducing Oxidative Stress and Apoptosis. Antioxidants. 2021;10(2):230. http://doi.org/10.3390/antiox10020230. PMid:33546473.

Leite RF, Annes K, Ispada J, De Lima CB, Dos Santos ÉC, Fontes PK, Nogueira MFG, Milazzotto MP. Oxidative Stress Alters the Profile of Transcription Factors Related to Early Development on In Vitro Produced Embryos. Oxid Med Cell Longev. 2018;2018(1):6730857. http://doi.org/10.1155/2018/6730857. PMid:29745379.

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787-95. http://doi.org/10.1038/nature05292. PMid:17051205.

López-Damián EP, Jiménez-Medina JA, Alarcón MA, Lammoglia MA, Hernández A, Galina CS, Fiordelisio T. Cryopreservation induces higher oxidative stress levels in Bos indicus embryos compared with Bos taurus. Theriogenology. 2020;143:74-81. http://doi.org/10.1016/j.theriogenology.2019.12.001. PMid:31838342.

Ma YY, Chen HW, Tzeng CR. Low oxygen tension increases mitochondrial membrane potential and enhances expression of antioxidant genes and implantation protein of mouse blastocyst cultured in vitro. J Ovarian Res. 2017;10(1):47. http://doi.org/10.1186/s13048-017-0344-1. PMid:28728562.

Maia MS, Bicudo SD, Sicherle CC, Rodello L, Gallego IC. Lipid peroxidation and generation of hydrogen peroxide in frozen-thawed ram semen cryopreserved in extenders with antioxidants. Anim Reprod Sci. 2010;122(1-2):118-23. http://doi.org/10.1016/j.anireprosci.2010.08.004. PMid:20813469.

Martínez-Rodero I, Salas-Huetos A, Ordóñez-León A, Hidalgo CO, Yeste M, Mercadé E, Mogas T. Cryoprotectant role of exopolysaccharide ID1 in the vitrification/in-straw warming of in vitro-produced bovine embryos. Reprod Domest Anim. 2022;57(5, Suppl 5):53-7. http://doi.org/10.1111/rda.14191. PMid:35748223.

Martino NA, Dell’aquila ME, Cardone RA, Somoskoi B, Lacalandra GM, Cseh S. Vitrification preserves chromatin integrity, bioenergy potential and oxidative parameters in mouse embryos. Reprod Biol Endocrinol. 2013;11:27. http://doi.org/10.1186/1477-7827-11-27. PMid:23552480.

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci. 2011;16(6):300-9. http://doi.org/10.1016/j.tplants.2011.03.007. PMid:21482172.

Moussa M, Yang CY, Zheng HY, Li MQ, Yu NQ, Yan SF, Huang JX, Shang JH. Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: protective role of β-mercaptoethanol. Theriogenology. 2019;125:317-23. http://doi.org/10.1016/j.theriogenology.2018.11.013. PMid:30502624.

Nedambale TL, Du F, Yang X, Tian XC. Higher survival rate of vitrified and thawed in vitro produced bovine blastocysts following culture in defined medium supplemented with beta-mercaptoethanol. Anim Reprod Sci. 2006;93(1-2):61-75. http://doi.org/10.1016/j.anireprosci.2005.06.027. PMid:16099115.

Nohalez A, Martinez CA, Parrilla I, Roca J, Gil MA, Rodriguez-Martinez H, Martinez EA, Cuello C. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology. 2018;113:113-9. http://doi.org/10.1016/j.theriogenology.2018.02.014. PMid:29477909.

Oliveira CS, Feuchard VLDS, de Freitas C, Rosa PMDS, Camargo AJDR, Saraiva NZ. In-straw warming protocol improves survival of vitrified embryos and allows direct transfer in cattle. Cryobiology. 2020;97:222-5. http://doi.org/10.1016/j.cryobiol.2020.02.007. PMid:32126213.

Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 2015;460(1):72-81. http://doi.org/10.1016/j.bbrc.2015.01.137. PMid:25998735.

Paschoal DM, Sudano MJ, Schwarz KRL, Maziero RRD, Guastali MD, Crocomo LF, Magalhães LCO, Martins A Jr, Leal CLV, Landim-Alvarenga FDC. Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin. Theriogenology. 2017;87:108-14. http://doi.org/10.1016/j.theriogenology.2016.08.011. PMid:27634395.

Patel PA, Chaudhary SS, Puri G, Singh VK, Odedara AB. Effects of β-mercaptoethanol on in vitro maturation and glutathione level of buffalo oocytes. Vet World. 2015;8(2):213-6. http://doi.org/10.14202/vetworld.2015.213-216. PMid:27047075.

Rocha-Frigoni NA, Leão BC, Nogueira É, Accorsi MF, Mingoti GZ. Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reprod Fertil Dev. 2014;26(6):797-805. http://doi.org/10.1071/RD12354. PMid:25319378.

Sciorio R, Smith GD. Embryo culture at a reduced oxygen concentration of 5%: a mini review. Zygote. 2019;27(6):355-61. http://doi.org/10.1017/S0967199419000522. PMid:31544720.

Silva ARN, Marques TC, Santos ECS, Diesel TO, Macedo IM, Teixeira RC, Martins CM, Alves BG, Gambarini ML. Resveratrol-supplemented holding or re-culture media improves viability of fresh or vitrified-warmed in vitro-derived bovine embryos. Research. Soc Dev. 2021;10(14):e367101422097. http://doi.org/10.33448/rsd-v10i14.22097.

Soto-Heras S, Paramio MT. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci. 2020;132:342-50. http://doi.org/10.1016/j.rvsc.2020.07.013. PMid:32738731.

Stringfellow DA, Givens MD. Manual of the International Embryo Transfer Society (IETS). 4th ed. Champaign, IL: IETS; 2010.

Takahashi M, Nagai T, Hamano S, Kuwayama M, Okamura N, Okano A. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol Reprod. 1993;49(2):228-32. http://doi.org/10.1095/biolreprod49.2.228. PMid:8373946.

Takahashi M, Nagai T, Okamura N, Takahashi H, Okano A. Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos. Biol Reprod. 2002;66(3):562-7. http://doi.org/10.1095/biolreprod66.3.562. PMid:11870058.

Valente RS, Almeida TG, Alves MF, Paschoal DM, Basso AC, Sudano MJ. Cellular and apoptotic status monitoring according to the ability and speed to resume post-cryopreservation embryonic development. Theriogenology. 2020;158:290-6. http://doi.org/10.1016/j.theriogenology.2020.09.026. PMid:33007714.

Wang X, Falcone T, Attaran M, Goldberg JM, Agarwal A, Sharma RK. Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil Steril. 2002;78(6):1272-7. http://doi.org/10.1016/S0015-0282(02)04236-X. PMid:12477524.

Xiang D, Jia B, Zhang B, Liang J, Hong Q, Wei H, Wu G. Astaxanthin supplementation improves the subsequent developmental competence of vitrified porcine zygotes. Front Vet Sci. 2022;9:871289. http://doi.org/10.3389/fvets.2022.871289. PMid:35433903.

Yu WJ, Chen CZ, Peng YX, Li Z, Gao Y, Liang S, Yuan B, Kim NH, Jiang H, Zhang JB. Schisanhenol improves early porcine embryo development by regulating the phosphorylation level of MAPK. Theriogenology. 2021;175:34-43. http://doi.org/10.1016/j.theriogenology.2021.08.019. PMid:34481228.

Zhuang J, Pan ZJ, Mengqiu-Li, Hong FS, Zhu CK, Wu N, Chang G, Wang H, Zhao XX. BDE-47 induced apoptosis in zebrafish embryos through mitochondrial ROS-mediated JNK signaling. Chemosphere. 2020;258:127385. http://doi.org/10.1016/j.chemosphere.2020.127385. PMid:32947675.
 


Submitted date:
03/21/2024

Accepted date:
11/07/2024

67880949a95395760821afc8 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections