Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0036
Animal Reproduction (AR)
Thematic Section: 37th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Pressing needs and recent advances to enhance production of embryos in vitro in cattle

Peter James Hansen

Downloads: 2
Views: 371

Abstract

Embryo transfer in cattle is an increasingly important technique for cattle production. Full attainment of the benefits of the technology will depend on overcoming hurdles to optimal performance using embryos produced in vitro. Given its importance, embryo technology research should become a global research priority for animal reproduction science. Among the goals of that research should be developing methods to increase the proportion of oocytes becoming embryos through optimization of in vitro oocyte maturation and in vitro fertilization, producing an embryo competent to establish and maintain pregnancy after transfer, and increasing recipient fertility through selection, management and pharmacological manipulation. The embryo produced in vitro is susceptible to epigenetic reprogramming and methods should be found to minimize deleterious epigenetic change while altering the developmental program of the resultant calf to increase its health and productivity. There are widening opportunities to rethink the technological basis for much of the current practices for production and transfer of embryos because of explosive advances in fields of bioengineering such as microfluidics, three-dimensional printing of cell culture materials, organoid culture, live-cell imaging, and cryopreservation.

Keywords

embryo, blastocyst, in vitro production, cattle, recipient, fertility

References

Abdelhady AWA, Aguiar LH, Lee YL, Guo Z, Bovell RT, Crane PL, Diel de Amorim M, Cheong SH. Rho-associated coiled-coil containing kinase inhibitor improves outcomes of direct-transfer slow-cooled bovine blastocysts. Theriogenology. 2023;211:19-27. http://doi.org/10.1016/j.theriogenology.2023.07.030. PMid:37556931.

Agerholm JS, Madsen SE, Krogh AKH, Najafzadeh V, Secher JB. Health assessment of Holstein calves born after in vitro fertilization, biopsy-based genotyping at the blastocyst stage and subsequent embryo transfer. Theriogenology. 2023;211:76-83. http://doi.org/10.1016/j.theriogenology.2023.08.005. PMid:37595376.

Alkan H, Satilmis F, Demirel MA, Bodu M, Yesilkaya OF, Ciftci MF, Erdem H, Tekindal MA, Alkan KK. Does using microfluidic sperm sorting chips in bovine IVEP affect blastocyst development? Reprod Domest Anim. 2023;58(7):1012-20. http://doi.org/10.1111/rda.14398. PMid:37246427.

Amaral TF, Gonella-Diaza A, Heredia D, Melo GD, Estrada-Cortés E, Jensen LM, Pohler K, Hansen PJ. Actions of DKK1 on the preimplantation bovine embryo to affect pregnancy establishment, placental function, and postnatal phenotype. Biol Reprod. 2022a;107(4):945-55. http://doi.org/10.1093/biolre/ioac128. PMid:35765194.

Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep. 2022b;12(1):7503. http://doi.org/10.1038/s41598-022-11447-7. PMid:35525843.

Barnes M, Kasimanickam R, Kasimanickam V. Effect of subclinical endometritis and flunixin meglumine administration on pregnancy in embryo recipient beef cows. Theriogenology. 2023;201:76-82. http://doi.org/10.1016/j.theriogenology.2023.02.020. PMid:36842264.

Baruselli PS, Ferreira RM, Sá MF Fo, Bó GA. Review: using artificial insemination v. natural service in beef herds. Animal. 2018;12(s1):s45-52. http://doi.org/10.1017/S175173111800054X. PMid:29554986.

Behnam M, Asadpour R, Topraggaleh TR, Hamali H. Improvement of post-thaw quality and fertilizing ability of bull spermatozoa using Rho kinase inhibitor in freezing extender. Front Vet Sci. 2023;10:1155048. http://doi.org/10.3389/fvets.2023.1155048. PMid:37483290.

Berg DK, Ledgard A, Donnison M, McDonald R, Henderson HV, Meier S, Juengel JL, Burke CR. The first week following insemination is the period of major pregnancy failure in pasture-grazed dairy cows. J Dairy Sci. 2022;105(11):9253-70. http://doi.org/10.3168/jds.2021-21773. PMid:36153157.

Besbaci M, Abdelli A, Belabdi I, Raboisson D. Non-steroidal anti-inflammatory drugs at embryo transfer on pregnancy rates in cows: a meta-analysis. Theriogenology. 2021;171:64-71. http://doi.org/10.1016/j.theriogenology.2021.04.010. PMid:34029785.

Betteridge KJ. Reflections on the golden anniversary of the first embryo transfer to produce a calf. Theriogenology. 2000;53(1):3-10. http://doi.org/10.1016/S0093-691X(99)00235-6. PMid:10735057.

Block J, Drost M, Monson RL, Rutledge JJ, Rivera RM, Paula-Lopes FF, Ocon OM, Krininger CE 3rd, Liu J, Hansen PJ. Use of insulin-like growth factor-I during embryo culture and treatment of recipients with gonadotropin-releasing hormone to increase pregnancy rates following the transfer of in vitro-produced embryos to heat-stressed, lactating cows. J Anim Sci. 2003;81(6):1590-602. http://doi.org/10.2527/2003.8161590x. PMid:12817508.

Bonacker RC, Gray KR, Breiner CA, Anderson JM, Patterson DJ, Spinka CM, Thomas JM. Comparison of the 7 & 7 Synch protocol and the 7-day CO-Synch + CIDR protocol among recipient beef cows in an embryo transfer program. Theriogenology. 2020;158:490-6. http://doi.org/10.1016/j.theriogenology.2020.09.033. PMid:33080452.

Bouwman AC, Mullaart E. Screening of in vitro-produced cattle embryos to assess incidence and characteristics of unbalanced chromosomal aberrations. JDS Commun. 2023;4(2):101-5. http://doi.org/10.3168/jdsc.2022-0275. PMid:36974223.

Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P. Culture medium and sex drive epigenetic reprogramming in preimplantation bovine embryos. Int J Mol Sci. 2021;22(12):6426. http://doi.org/10.3390/ijms22126426. PMid:34204008.

Carrascal-Triana EL, Zolini AM, de King AR, Penitente-Filho JM, Hansen PJ, Torres CAA, Block J. Effect of addition of ascorbate, dithiothreitol or a caspase-3 inhibitor to cryopreservation medium on post-thaw survival of bovine embryos produced in vitro. Reprod Domest Anim. 2022;57(9):1074-81. http://doi.org/10.1111/rda.14182. PMid:35699342.

Carter F, Forde N, Duffy P, Wade M, Fair T, Crowe MA, Evans AC, Kenny DA, Roche JF, Lonergan P. Effect of increasing progesterone concentration from day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod Fertil Dev. 2008;20(3):368-75. http://doi.org/10.1071/RD07204. PMid:18402756.

Cedeño A, Tríbulo A, Tríbulo RJ, Andrada S, Mapletoft RJ, Bó GA. Effect of estrus expression or treatment with GnRH on pregnancies per embryo transfer and pregnancy losses in beef recipients synchronized with estradiol/progesterone-based protocols. Theriogenology. 2020;157:378-87. http://doi.org/10.1016/j.theriogenology.2020.08.023. PMid:32866844.

Chen F, Hou Y, Zhu X, Mei C, Guo R, Shi Z. Impact of accessory corpus luteum induced by gonadotropin-releasing hormone or human chorionic gonadotropin on pregnancy rates of dairy cattle following embryo transfer: A META-analysis. Vet Sci. 2023;10(5):309. http://doi.org/10.3390/vetsci10050309. PMid:37235391.

Clare CE, Pestinger V, Kwong WY, Tutt DAR, Xu J, Byrne HM, Barrett DA, Emes RD, Sinclair KD. Interspecific variation in one-carbon metabolism within the ovarian follicle, oocyte, and preimplantation embryo: consequences for epigenetic programming of DNA methylation. Int J Mol Sci. 2021;22(4):1838. http://doi.org/10.3390/ijms22041838. PMid:33673278.

Crowe AD, Lonergan P, Butler ST. Invited review: use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds. J Dairy Sci. 2021;104(12):12189-206. http://doi.org/10.3168/jds.2021-20281. PMid:34538485.

Crowe AD, Sánchez JM, Moore SG, McDonald M, Rodrigues R, Morales MF, Orsi de Freitas L, Randi F, Furlong J, Browne JA, Rabaglino MB, Lonergan P, Butler ST. Fertility in seasonal-calving pasture-based lactating dairy cows following timed artificial insemination or timed embryo transfer with fresh or frozen in vitro-produced embryos. J Dairy Sci. 2024;107(3):1788-804. http://doi.org/10.3168/jds.2023-23520. PMid:37806631.

Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A review on the role of bicarbonate and proton transporters during sperm capacitation in mammals. Int J Mol Sci. 2022;23(11):6333. http://doi.org/10.3390/ijms23116333. PMid:35683013.

Dellaqua TT, Vígaro RA, Janini LCZ, Dal Canto M, Renzini MM, Lodde V, Luciano AM, Buratini J. Neuregulin 1 (NRG1) modulates oocyte nuclear maturation during IVM and improves post-IVF embryo development. Theriogenology. 2023;195:209-16. http://doi.org/10.1016/j.theriogenology.2022.10.041. PMid:36368115.

Denicol AC, Block J, Kelley DE, Pohler KG, Dobbs KB, Mortensen CJ, Ortega MS, Hansen PJ. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J. 2014;28(9):3975-86. http://doi.org/10.1096/fj.14-253112. PMid:24858280.

Denis-Robichaud J, Fernandes ACC, Santos JEP, Cerri RLA. Circulating progesterone at insemination and accessory spermatozoa are associated with fertilization and embryo quality five or six days post insemination in dairy cattle. Theriogenology. 2022;189:64-9. http://doi.org/10.1016/j.theriogenology.2022.04.018. PMid:35724454.

Dobbs KB, Khan FA, Sakatani M, Moss JI, Ozawa M, Ealy AD, Hansen PJ. Regulation of pluripotency of inner cell mass and growth and differentiation of trophectoderm of the bovine embryo by colony stimulating factor 2. Biol Reprod. 2013;89(6):141. http://doi.org/10.1095/biolreprod.113.113183. PMid:24198123.

Donnay I, van Langendonckt A, Auquier P, Grisart B, Vansteenbrugge A, Massip A, Dessy F. Effects of co-culture and embryo number on the in vitro development of bovine embryos. Theriogenology. 1997;47(8):1549-61. http://doi.org/10.1016/S0093-691X(97)00160-X. PMid:16728097.

Ealy AD, Wooldridge LK, McCoski SR. BOARD INVITED REVIEW: post-transfer consequences of in vitro-produced embryos in cattle. J Anim Sci. 2019;97(6):2555-68. http://doi.org/10.1093/jas/skz116. PMid:30968113.

El Azzi MS, Cardoso JL, Landeo RA, Pontes JHF, de Souza JC, Martins JPN. Effect of inducing accessory corpus luteum formation with gonadotropin-releasing hormone or human chorionic gonadotropin on the day of embryo transfer on fertility of recipient dairy heifers and lactating cows. JDS Commun. 2023;4(2):155-60. http://doi.org/10.3168/jdsc.2022-0286. PMid:36974210.

Estrada-Cortés E, Jannaman EA, Block J, Amaral TF, Hansen PJ. Programming of postnatal phenotype caused by exposure of cultured embryos from Brahman cattle to colony-stimulating factor 2 and serum. J Anim Sci. 2021a;99(8):skab180. http://doi.org/10.1093/jas/skab180. PMid:34079989.

Estrada-Cortés E, Ortiz W, Rabaglino MB, Block J, Rae O, Jannaman EA, Xiao Y, Hansen PJ. Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation. FASEB J. 2021b;35(10):e21926. http://doi.org/10.1096/fj.202100991R. PMid:34533870.

Farin CE, Farmer WT, Farin PW. Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod Fertil Dev. 2010;22(1):75-87. http://doi.org/10.1071/RD09217. PMid:20003848.

Ferraz MAMM, Ferronato GA. Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production. Anim Reprod. 2023;20(2):e20230058. http://doi.org/10.1590/1984-3143-ar2023-0058. PMid:37638255.

Ferraz MAMM, Henning HHW, Costa PF, Malda J, Melchels FP, Wubbolts R, Stout TAE, Vos PLAM, Gadella BM. Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab Chip. 2017;17(5):905-16. http://doi.org/10.1039/C6LC01566B. PMid:28194463.

Fricke PM, Wiltbank MC. Symposium review: the implications of spontaneous versus synchronized ovulations on the reproductive performance of lactating dairy cows. J Dairy Sci. 2022;105(5):4679-89. http://doi.org/10.3168/jds.2021-21431. PMid:35307178.

Fujihara Y, Noda T, Kobayashi K, Oji A, Kobayashi S, Matsumura T, Larasati T, Oura S, Kojima-Kita K, Yu Z, Matzuk MM, Ikawa M. Identification of multiple male reproductive tract-specific proteins that regulate sperm migration through the oviduct in mice. Proc Natl Acad Sci USA. 2019;116(37):18498-506. http://doi.org/10.1073/pnas.1908736116. PMid:31455729.

Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U, Rings F, Held E, Dufort I, Sirard MA, Schellander K, Tesfaye D. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol Reprod. 2012;87(4):100. http://doi.org/10.1095/biolreprod.112.099697. PMid:22811576.

García-Guerra A, Sala RV, Carrenho-Sala L, Baez GM, Motta JCL, Fosado M, Moreno JF, Wiltbank MC. Postovulatory treatment with GnRH on day 5 reduces pregnancy loss in recipients receiving an in vitro produced expanded blastocyst. Theriogenology. 2020;141:202-10. http://doi.org/10.1016/j.theriogenology.2019.05.010. PMid:31606718.

Gargus ES, Rogers HB, McKinnon KE, Edmonds ME, Woodruff TK. Engineered reproductive tissues. Nat Biomed Eng. 2020;4(4):381-93. http://doi.org/10.1038/s41551-020-0525-x. PMid:32251392.

Geary TW, Burns GW, Moraes JG, Moss JI, Denicol AC, Dobbs KB, Ortega MS, Hansen PJ, Wehrman ME, Neibergs H, O’Neil E, Behura S, Spencer TE. Identification of beef heifers with superior uterine capacity for pregnancy. Biol Reprod. 2016;95(2):47. http://doi.org/10.1095/biolreprod.116.141390. PMid:27417907.

Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction. 2016;152(5):R143-57. http://doi.org/10.1530/REP-15-0606. PMid:27422885.

Gilchrist RB, Thompson JG. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 2007;67(1):6-15. http://doi.org/10.1016/j.theriogenology.2006.09.027. PMid:17092551.

Gómez E, Carrocera S, Martín D, Pérez-Jánez JJ, Prendes J, Prendes JM, Vázquez A, Murillo A, Gimeno I, Muñoz M. Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium. Theriogenology. 2020;146:39-47. http://doi.org/10.1016/j.theriogenology.2020.01.056. PMid:32036059.

Gómez E, Carrocera S, Martin D, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Murillo A, Muñoz M. Hepatoma-derived growth factor: protein quantification in uterine fluid, gene expression in endometrial-cell culture and effects on in vitro embryo development, pregnancy and birth. Theriogenology. 2017;96:118-25. http://doi.org/10.1016/j.theriogenology.2017.04.008. PMid:28532827.

Goszczynski DE, Navarro M, Mutto AA, Ross PJ. Review: embryonic stem cells as tools for in vitro gamete production in livestock. Animal. 2023;17(Suppl 1):100828. http://doi.org/10.1016/j.animal.2023.100828. PMid:37567652.

Haimon MLJ, Estrada-Cortés E, Amaral TF, Martin H, Jeensuk S, Block J, Heredia D, Venturini M, Santos Rojas C, Gonella-Diaza AM, DiLorenzo N, Scheffler TL, Dufour P, Sirard MA, Dalmaso de Melo G, Pohler KG, Hansen PJ. Provision of choline chloride to the bovine preimplantation embryo alters postnatal body size and DNA methylation. Biol Reprod. 2024;ioae092. http://doi.org/10.1093/biolre/ioae092.

Hansen PJ, Dobbs KB, Denicol AC, Siqueira LGB. Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res. 2016;363(1):237-47. http://doi.org/10.1007/s00441-015-2287-4. PMid:26391275.

Hansen PJ, Dobbs KB, Denicol AC. Programming of the preimplantation embryo by the embryokine colony stimulating factor 2. Anim Reprod Sci. 2014;149(1-2):59-66. http://doi.org/10.1016/j.anireprosci.2014.05.017. PMid:24954585.

Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020a;98(11):skaa288. http://doi.org/10.1093/jas/skaa288. PMid:33141879.

Hansen PJ. Implications of assisted reproductive technologies for pregnancy outcomes in mammals. Annu Rev Anim Biosci. 2020b;8:395-413. http://doi.org/10.1146/annurev-animal-021419-084010. PMid:32069434.

Hansen PJ. Some challenges and unrealized opportunities toward widespread use of the in vitro-produced embryo in cattle production. Animal. 2023;17(Suppl 1):100745. http://doi.org/10.1016/j.animal.2023.100745. PMid:37567654.

Hansen PJ, Estrada-Cortés E, Amaral TF, Ramírez-Hernández R. Meta-analysis to determine efficacy of colony-stimulating factor 2 for improving pregnancy success after embryo transfer in cattle. Theriogenology. 2024;219:126-31. http://doi.org/10.1016/j.theriogenology.2024.02.025. PMid:38428334.

Hawk HW. Transport and fate of spermatozoa after insemination of cattle. J Dairy Sci. 1987;70(7):1487-503. http://doi.org/10.3168/jds.S0022-0302(87)80173-X. PMid:3305615.

Hendricks KE, Hansen PJ. Consequences for the bovine embryo of being derived from a spermatozoon subjected to oxidative stress. Aust Vet J. 2010;88(8):307-10. http://doi.org/10.1111/j.1751-0813.2010.00585.x. PMid:20633166.

Hoorn QA, Rabaglino MB, Maia TS, Sagheer M, Fuego D, Jiang Z, Hansen PJ. Transcriptomic profiling of the bovine endosalpinx and endometrium to identify putative embryokines. Physiol Genomics. 2023;55(11):557-64. http://doi.org/10.1152/physiolgenomics.00064.2023. PMid:37720990.

Hourcade JD, Pérez-Crespo M, Fernández-González R, Pintado B, Gutiérrez-Adán A. Selection against spermatozoa with fragmented DNA after postovulatory mating depends on the type of damage. Reprod Biol Endocrinol. 2010;8(1):9. http://doi.org/10.1186/1477-7827-8-9. PMid:20113521.

Huayhua C, Rodríguez M, Vega J, Briones M, Rodriguez-Alvarez L, Mellisho E. Blastulation time measured with time-lapse system can predict in vitro viability of bovine blastocysts. PLoS One. 2023;18(8):e0289751. http://doi.org/10.1371/journal.pone.0289751. PMid:37561791.

Jeensuk S, Ortega MS, Saleem M, Hawryluk B, Scheffler TL, Hansen PJ. Actions of WNT family member 5A to regulate characteristics of development of the bovine preimplantation embryo. Biol Reprod. 2022;107(4):928-44. http://doi.org/10.1093/biolre/ioac127. PMid:35765196.

Kanazawa T, Seki M, Ishiyama K, Kubo T, Kaneda Y, Sakaguchi M, Izaike Y, Takahashi T. Pregnancy prediction on the day of embryo transfer (Day 7) and Day 14 by measuring luteal blood flow in dairy cows. Theriogenology. 2016;86(6):1436-44. http://doi.org/10.1016/j.theriogenology.2016.05.001. PMid:27262885.

Kannampuzha-Francis J, Denicol AC, Loureiro B, Kaniyamattam K, Ortega MS, Hansen PJ. Exposure to colony stimulating factor 2 during preimplantation development increases postnatal growth in cattle. Mol Reprod Dev. 2015;82(11):892-7. http://doi.org/10.1002/mrd.22533. PMid:26227079.

Kannampuzha-Francis J, Tribulo P, Hansen PJ. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo. Reprod Fertil Dev. 2017;29(7):1329-39. http://doi.org/10.1071/RD16033. PMid:27185102.

Kawarsky SJ, Basrur PK, Stubbings RB, Hansen PJ, King WA. Chromosomal abnormalities in bovine embryos and their influence on development. Biol Reprod. 1996;54(1):53-9. http://doi.org/10.1095/biolreprod54.1.53. PMid:8838000.

Koyama K, Kang SS, Huang W, Yanagawa Y, Takahashi Y, Nagano M. Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation. J Reprod Dev. 2014;60(2):136-42. http://doi.org/10.1262/jrd.2013-115. PMid:24492658.

Lafontaine S, Labrecque R, Blondin P, Cue RI, Sirard MA. Comparison of cattle derived from in vitro fertilization, multiple ovulation embryo transfer, and artificial insemination for milk production and fertility traits. J Dairy Sci. 2023;106(6):4380-96. http://doi.org/10.3168/jds.2022-22736. PMid:37028966.

Laurindo AL No, Ruas FL, Santo BSE, Mattos ACD, Silva JB, Diniz MF Jr, Pereira DFC, Lacerda IP, Carvalho JO, Pugliesi G. Effects of long-acting injectable progesterone supplementation at early dioestrus on pregnancy maintenance in beef and dairy recipient cattle. Reprod Domest Anim. 2024;59(1):e14509. http://doi.org/10.1111/rda.14509. PMid:38037714.

Leal GR, Monteiro CAS, Carvalheira LR, Souza-Fabjan JMG. The Simulated Physiological Oocyte Maturation (SPOM) system in domestic animals: A systematic review. Theriogenology. 2022;188:90-9. http://doi.org/10.1016/j.theriogenology.2022.05.023. PMid:35688043.

Li H, Wang Z, Zhao B, Zhang H, Fan D, Ma H, Zhang Y, Wang Y. Sperm-borne lncRNA loc100847420 improves development of early bovine embryos. Anim Reprod Sci. 2023;257:107333. http://doi.org/10.1016/j.anireprosci.2023.107333. PMid:37729849.

Liang S, Yuan B, Jin YX, Zhang JB, Bang JK, Kim NH. Effects of antifreeze glycoprotein 8 (AFGP8) supplementation during vitrification on the in vitro developmental capacity of expanded bovine blastocysts. Reprod Fertil Dev. 2017;29(11):2140-8. http://doi.org/10.1071/RD16426. PMid:28241901.

Lopera-Vasquez R, Hamdi M, Maillo V, Lloreda V, Coy P, Gutierrez-Adan A, Bermejo-Alvarez P, Rizos D. Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reprod Fertil Dev. 2017;29(3):621-9. http://doi.org/10.1071/RD15238. PMid:26462440.

Loureiro B, Bonilla L, Block J, Fear JM, Bonilla AQ, Hansen PJ. Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro. Endocrinology. 2009;150(11):5046-54. http://doi.org/10.1210/en.2009-0481. PMid:19797121.

Magata F. Time-lapse monitoring technologies for the selection of bovine in vitro fertilized embryos with high implantation potential. J Reprod Dev. 2023;69(2):57-64. http://doi.org/10.1262/jrd.2022-131. PMid:36775299.

Mahé C, Zlotkowska AM, Reynaud K, Tsikis G, Mermillod P, Druart X, Schoen J, Saint-Dizier M. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct†. Biol Reprod. 2021;105(2):317-31. http://doi.org/10.1093/biolre/ioab105. PMid:34057175.

Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TP, Sonstegard TS, van Tassell CP. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One. 2009;4(4):e5350. http://doi.org/10.1371/journal.pone.0005350. PMid:19390634.

McMillan WH. Statistical models predicting embryo survival to term in cattle after embryo transfer. Theriogenology. 1998;50(7):1053-70. http://doi.org/10.1016/S0093-691X(98)00207-6. PMid:10734423.

Miles JR, Laughlin TD, Sargus-Patino CN, Pannier AK. In vitro porcine blastocyst development in three-dimensional alginate hydrogels. Mol Reprod Dev. 2017;84(9):775-87. http://doi.org/10.1002/mrd.22814. PMid:28407335.

Miller DJ. Sperm in the mammalian female reproductive tract: surfing through the tract to try to beat the odds. Annu Rev Anim Biosci. 2024;12(1):301-19. http://doi.org/10.1146/annurev-animal-021022-040629. PMid:37906840.

Ming H, Sun J, Pasquariello R, Gatenby L, Herrick JR, Yuan Y, Pinto CR, Bondioli KR, Krisher RL, Jiang Z. The landscape of accessible chromatin in bovine oocytes and early embryos. Epigenetics. 2021;16(3):300-12. http://doi.org/10.1080/15592294.2020.1795602. PMid:32663104.

Monteiro PL Jr, Nascimento AB, Pontes GC, Fernandes GO, Melo LF, Wiltbank MC, Sartori R. Progesterone supplementation after ovulation: effects on corpus luteum function and on fertility of dairy cows subjected to AI or ET. Theriogenology. 2015;84(7):1215-24. http://doi.org/10.1016/j.theriogenology.2015.06.023. PMid:26255222.

Monteiro PLJ, Consentini CEC, Andrade JPN, Beard AD, Garcia-Guerra A, Sartori R, Wiltbank MC. Research on timed AI in beef cattle: Past, present and future, a 27-year perspective. Theriogenology. 2023;211:161-71. http://doi.org/10.1016/j.theriogenology.2023.07.037. PMid:37639998.

Nava-Trujillo H, Rivera RM. Review: large offspring syndrome in ruminants: current status and prediction during pregnancy. Animal. 2023;17(Suppl 1):100740. http://doi.org/10.1016/j.animal.2023.100740. PMid:37567678.

Niemann H, Carnwath JW, Herrmann D, Wieczorek G, Lemme E, Lucas-Hahn A, Olek S. DNA methylation patterns reflect epigenetic reprogramming in bovine embryos. Cell Reprogram. 2010;12(1):33-42. http://doi.org/10.1089/cell.2009.0063. PMid:20132011.

Niles AM, Fricke HP, Carvalho PD, Wiltbank MC, Hernandez LL, Fricke PM. Effect of treatment with human chorionic gonadotropin 7 days after artificial insemination or at the time of embryo transfer on reproductive outcomes in nulliparous Holstein heifers. J Dairy Sci. 2019;102(3):2593-606. http://doi.org/10.3168/jds.2018-15588. PMid:30692012.

Oliveira CS, Feuchard VLDS, de Freitas C, Rosa PMDS, Camargo AJDR, Saraiva NZ. In-straw warming protocol improves survival of vitrified embryos and allows direct transfer in cattle. Cryobiology. 2020;97:222-5. http://doi.org/10.1016/j.cryobiol.2020.02.007. PMid:32126213.

Oliveira Fernandes G, de Lima CB, Fidelis AAG, Milazzotto MP, Dode MAN. Metabolic signature of spent culture media shows lipid metabolism as a determinant of pregnancy outcomes. Reprod Domest Anim. 2023;58(1):117-28. http://doi.org/10.1111/rda.14271. PMid:36156318.

Parrish JJ. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology. 2014;81(1):67-73. http://doi.org/10.1016/j.theriogenology.2013.08.005. PMid:24274411.

Pereira MH, Sanches CP, Guida TG, Rodrigues AD, Aragon FL, Veras MB, Borges PT, Wiltbank MC, Vasconcelos JL. Timing of prostaglandin F2α treatment in an estrogen-based protocol for timed artificial insemination or timed embryo transfer in lactating dairy cows. J Dairy Sci. 2013;96(5):2837-46. http://doi.org/10.3168/jds.2012-5840. PMid:23498008.

Pérez-Mora A, Segura-Correa JC, Peralta-Torres JA. Factors associated with pregnancy rate in fixed-time embryo transfer in cattle under humid-tropical conditions of México. Anim Reprod. 2020;17(2):e20200007. http://doi.org/10.1590/1984-3143-ar2020-0007. PMid:32714459.

Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991;44(1):102-7. http://doi.org/10.1095/biolreprod44.1.102. PMid:2015341.

Pomeroy KO, Comizzoli P, Rushing JS, Lersten IL, Nel-Themaat L. The ART of cryopreservation and its changing landscape. Fertil Steril. 2022;117(3):469-76. http://doi.org/10.1016/j.fertnstert.2022.01.018. PMid:35219471.

Ponsuksili S, Murani E, Schwerin M, Schellander K, Tesfaye D, Wimmers K. Gene expression and DNA-methylation of bovine pretransfer endometrium depending on its receptivity after in vitro-produced embryo transfer. PLoS One. 2012;7(8):e42402. http://doi.org/10.1371/journal.pone.0042402. PMid:22952593.

Ponsuksili S, Tesfaye D, Schellander K, Hoelker M, Hadlich F, Schwerin M, Wimmers K. Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biol Reprod. 2014;91(6):135. http://doi.org/10.1095/biolreprod.114.121392. PMid:25253731.

Pugliesi G, Dalmaso de Melo G, Silva JB, Carvalhêdo AS, Lopes E, de Siqueira Filho E, Silva LA, Binelli M. Use of color-Doppler ultrasonography for selection of recipients in timed-embryo transfer programs in beef cattle. Theriogenology. 2019;135:73-9. http://doi.org/10.1016/j.theriogenology.2019.06.006. PMid:31203090.

Rabaglino MB, Salilew-Wondim D, Zolini A, Tesfaye D, Hoelker M, Lonergan P, Hansen PJ. Machine-learning methods applied to integrated transcriptomic data from bovine blastocysts and elongating conceptuses to identify genes predictive of embryonic competence. FASEB J. 2023;37(3):e22809. http://doi.org/10.1096/fj.202201977R. PMid:36753406.

Rabaglino MB, Secher JB, Hyttel P, Kadarmideen HN. In vitro- and in vivo-produced male dairy calves show molecular differences in the hepatic and muscular energy regulation. Biol Reprod. 2022;107(4):1113-24. http://doi.org/10.1093/biolre/ioac131. PMid:35766406.

Raes A, Wydooghe E, Pavani KC, Bogado Pascottini O, van Steendam K, Dhaenens M, Boel A, Heras S, Heindryckx B, Peelman L, Deforce D, van Nieuwerburgh F, Opsomer G, van Soom A, Smits K. Cathepsin-L secreted by high-quality bovine embryos exerts an embryotrophic effect in vitro. Int J Mol Sci. 2023;24(7):6563. http://doi.org/10.3390/ijms24076563. PMid:37047535.

Rivera RM, Goldkamp AK, Patel BN, Hagen DE, Soto-Moreno EJ, Li Y, Kim CN, Miller C, Williams F 3rd, Jannaman E, Xiao Y, Tribulo P, Estrada-Cortés E, Brau-Rodríguez AR, Hansen PJ, Wu Z, Spinka CM, Martin N, Elsik CG. Identification of large offspring syndrome during pregnancy through ultrasonography and maternal blood transcriptome analyses. Sci Rep. 2022;12(1):10540. http://doi.org/10.1038/s41598-022-14597-w. PMid:35732675.

Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002;61(2):234-48. http://doi.org/10.1002/mrd.1153. PMid:11803560.

Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci. 2020;103(12):11930-44. http://doi.org/10.3168/jds.2020-19068. PMid:33041033.

Sang L, Xiao Y, Jiang Z, Forde N, Tian XC, Lonergan P, Hansen PJ. Atlas of receptor genes expressed by the bovine morula and corresponding ligand-related genes expressed by uterine endometrium. Mol Reprod Dev. 2021;88(10):694-704. http://doi.org/10.1002/mrd.23534. PMid:34596291.

Santos GMGD, Junior LB, Silva-Santos KC, Ayres Dias JH, Dias IDS, Seneda MM, Morotti F. Conception rate and pregnancy loss in fixed-time cattle embryo transfer programs are related to the luteal blood perfusion but not to the corpus luteum size. Theriogenology. 2023;210:251-5. http://doi.org/10.1016/j.theriogenology.2023.07.039. PMid:37549464.

Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biol Reprod. 2022;106(2):274-90. http://doi.org/10.1093/biolre/ioac009. PMid:35136962.

Seekford ZK, Wooldridge LK, Dias NW, Timlin CL, Sales ÁF, Speckhart SL, Pohler KG, Cockrum RR, Mercadante VRG, Ealy AD. Interleukin-6 supplementation improves post-transfer embryonic and fetal development of in vitro-produced bovine embryos. Theriogenology. 2021;170:15-22. http://doi.org/10.1016/j.theriogenology.2021.04.004. PMid:33957485.

Siqueira LGB, Dikmen S, Ortega MS, Hansen PJ. Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen. J Dairy Sci. 2017;100(7):5899-908. http://doi.org/10.3168/jds.2016-12539. PMid:28456408.

Soares ACS, Lodde V, Barros RG, Price CA, Luciano AM, Buratini J. Steroid hormones interact with natriuretic peptide C to delay nuclear maturation, to maintain oocyte-cumulus communication and to improve the quality of in vitro-produced embryos in cattle. Reprod Fertil Dev. 2017;29(11):2217-24. http://doi.org/10.1071/RD16320. PMid:28356185.

Strączyńska P, Papis K, Morawiec E, Czerwiński M, Gajewski Z, Olejek A, Bednarska-Czerwińska A. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. Reprod Biol Endocrinol. 2022;20(1):37. http://doi.org/10.1186/s12958-022-00906-5. PMid:35209923.

Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006;21(2):477-83. http://doi.org/10.1093/humrep/dei323. PMid:16199424.

Thibier M. Data Retrieval Committee statistics of Embryo Transfer – Year 2008. The worldwide statistics of embryo transfers in farm animals. Embryo Transfer Newsletter. 2009;27(4):13-9.

Tríbulo P, Jumatayeva G, Lehloenya K, Moss JI, Negrón-Pérez VM, Hansen PJ. Effects of sex on response of the bovine preimplantation embryo to insulin-like growth factor 1, activin A, and WNT7A. BMC Dev Biol. 2018;18(1):16. http://doi.org/10.1186/s12861-018-0176-2. PMid:30055575.

Trigal B, Gómez E, Díez C, Caamaño JN, Martín D, Carrocera S, Muñoz M. In vitro development of bovine embryos cultured with activin A. Theriogenology. 2011;75(3):584-8. http://doi.org/10.1016/j.theriogenology.2010.09.010. PMid:21040964.

Tšuiko O, Catteeuw M, Zamani Esteki M, Destouni A, Bogado Pascottini O, Besenfelder U, Havlicek V, Smits K, Kurg A, Salumets A, D’Hooghe T, Voet T, van Soom A, Robert Vermeesch J. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum Reprod. 2017;32(11):2348-57. http://doi.org/10.1093/humrep/dex286. PMid:29040498.

Tutt DAR, Guven-Ates G, Kwong WY, Simmons R, Sang F, Silvestri G, Canedo-Ribeiro C, Handyside AH, Labrecque R, Sirard MA, Emes RD, Griffin DK, Sinclair KD. Developmental, cytogenetic and epigenetic consequences of removing complex proteins and adding melatonin during in vitro maturation of bovine oocytes. Front Endocrinol. 2023;14:1280847. http://doi.org/10.3389/fendo.2023.1280847. PMid:38027209.

Tutt DAR, Silvestri G, Serrano-Albal M, Simmons RJ, Kwong WY, Guven-Ates G, Canedo-Ribeiro C, Labrecque R, Blondin P, Handyside AH, Griffin DK, Sinclair KD. Analysis of bovine blastocysts indicates ovarian stimulation does not induce chromosome errors, nor discordance between inner-cell mass and trophectoderm lineages. Theriogenology. 2021;161:108-19. http://doi.org/10.1016/j.theriogenology.2020.11.021. PMid:33307428.

Urrego R, Bernal-Ulloa SM, Chavarría NA, Herrera-Puerta E, Lucas-Hahn A, Herrmann D, Winkler S, Pache D, Niemann H, Rodriguez-Osorio N. Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro. Zygote. 2017;25(2):131-40. http://doi.org/10.1017/S096719941600040X. PMid:28137339.

Vallet-Buisan M, Mecca R, Jones C, Coward K, Yeste M. Contribution of semen to early embryo development: fertilization and beyond. Hum Reprod Update. 2023;29(4):395-433. http://doi.org/10.1093/humupd/dmad006. PMid:36882116.

VanRaden PM. Symposium review: how to implement genomic selection. J Dairy Sci. 2020;103(6):5291-301. http://doi.org/10.3168/jds.2019-17684. PMid:32331884.

Vargas LN, Nochi ARF, de Castro PS, Cunha ATM, Silva TCF, Togawa RC, Silveira MM, Caetano AR, Franco MM. Differentially methylated regions identified in bovine embryos are not observed in adulthood. Anim Reprod. 2023;20(1):e20220076. http://doi.org/10.1590/1984-3143-ar2022-0076. PMid:36938311.

Viana JHM. 2022 statistics of embryo production and transfer in domestic farm animals: the main trends for the world embryo industry still stand. Embryo Transfer Newsletter. 2023;41:20-38.

Viuff D, Rickords L, Offenberg H, Hyttel P, Avery B, Greve T, Olsaker I, Williams JL, Callesen H, Thomsen PD. A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol Reprod. 1999;60(6):1273-8. http://doi.org/10.1095/biolreprod60.6.1273. PMid:10330080.

Willett EL, Black WG, Casida LE, Stone WH, Buckner PJ. Successful transplantation of a fertilized bovine ovum. Science. 1951;113(2931):247. http://doi.org/10.1126/science.113.2931.247.a. PMid:14809298.

Wooldridge LK, Ealy AD. Interleukin-6 promotes primitive endoderm development in bovine blastocysts. BMC Dev Biol. 2021;21(1):3. http://doi.org/10.1186/s12861-020-00235-z. PMid:33430761.

Wooldridge LK, Johnson SE, Cockrum RR, Ealy AD. Interleukin-6 requires JAK to stimulate inner cell mass expansion in bovine embryos. Reproduction. 2019;158(4):303-12. http://doi.org/10.1530/REP-19-0286. PMid:31408846.

Yaghoobi M, Abdelhady A, Favakeh A, Xie P, Cheung S, Mokhtare A, Lee YL, Nguyen AV, Palermo G, Rosenwaks Z, Cheong SH, Abbaspourrad A. Faster sperm selected by rheotaxis leads to superior early embryonic development in vitro. Lab Chip. 2024;24(2):210-23. http://doi.org/10.1039/D3LC00737E. PMid:37990939.

Yang QE, Fields SD, Zhang K, Ozawa M, Johnson SE, Ealy AD. Fibroblast growth factor 2 promotes primitive endoderm development in bovine blastocyst outgrowths. Biol Reprod. 2011;85(5):946-53. http://doi.org/10.1095/biolreprod.111.093203. PMid:21778141.

Zhang M, Zhang J, Wang D, Liu Z, Xing K, Wang Y, Jiao M, Wang Y, Shi B, Zhang H, Zhang Y. C-X-C motif chemokine ligand 12 improves the developmental potential of bovine oocytes by activating SH2 domain-containing tyrosine phosphatase 2 during maturation†. Biol Reprod. 2023;109(3):282-98. http://doi.org/10.1093/biolre/ioad079. PMid:37498179.

Zhu L, Marjani SL, Jiang Z. The epigenetics of gametes and early embryos and potential long-range consequences in livestock species-filling in the picture with epigenomic analyses. Front Genet. 2021;12:557934. http://doi.org/10.3389/fgene.2021.557934. PMid:33747031.
 


Submitted date:
03/20/2024

Accepted date:
06/07/2024

66c73a31a95395081b0b5803 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections