Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0043
Animal Reproduction (AR)
Thematic Section: 37th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Sperm hyperactivation in the uterus and oviduct: a double-edged sword for sperm and maternal innate immunity toward fertility

Ihshan Akthar; Mohamed Samy Yousef; Alireza Mansouri; Masayuki Shimada; Akio Miyamoto

Downloads: 1
Views: 137

Abstract

In cattle, artificial insemination (AI) is a technique that allows breeding by depositing frozen-thawed and extended semen into the female reproductive tract. The semen contains sperm with various motility patterns including dead, progressive and hyperactivated. Sperm hyperactivation is high amplitude, asymmetrical beating of sperm tail which usually occurs in the oviduct as part of the capacitation process, but it can also be induced by cryopreservation. After insemination, sperm enter the uterine glands and trigger a pro-inflammatory response in the uterus. Hyperactivated sperm, stimulated by sperm-Toll-like receptor 2 (TLR2), penetrates the mucus and uterine glands more efficiently and enhances the immune response. This facilitates the clearance of excess and dead sperm from the uterus. Some sperm escape the immune response and reach the oviduct either before or after the immune response is initiated. In the oviduct, sperm bind to the epithelium and form a reservoir. This triggers an anti-inflammatory response and preserves the fertilization potential of sperm. Hyperactivation facilitates sperm detaching from the epithelium, swimming through the viscous mucus and cumulus cells, and penetrating the egg's zona pellucida. Sperm-TLR2 activation enhances Ca2+-influx and acrosome reaction, which enables sperm to penetrate and fertilize oocytes during in vitro fertilization. Altogether, post-AI in cattle, sperm and maternal immunity interact differentially depending upon the site of sperm hyperactivation – whether it occurs within the uterus or oviduct. Specifically, hyperactivated sperm that enter the uterus after AI or are triggered via sperm-TLR2 activation or other stimuli contribute to sperm-induced uterine inflammation. Such hyperactivated sperm may impede their capacity to ascend to the oviduct. Conversely, sperm that become hyperactivated within the oviduct modulate their interactions with the oviduct and oocytes, which is pivotal during fertilization process. Indeed, the location and timing of sperm hyperactivation partially via TLR2 activation are critical determinants of their different influence on fertility.

Keywords

sperm, hyperactivation, uterus, oviduct, Toll-Like Receptor 2

References

Akthar I, Kim Y, Umehara T, Kanno C, Sasaki M, Marey MA, Yousef MS, Haneda S, Shimada M, Miyamoto A. Activation of sperm Toll-like receptor 2 induces hyperactivation to enhance the penetration to mucus and uterine glands: a trigger for the uterine inflammatory cascade in cattle. Front Immunol. 2023;14:1319572. http://doi.org/10.3389/fimmu.2023.1319572. PMid:38179051.

Akthar I, Marey MA, Kim Y, Shimada M, Suarez SS, Miyamoto A. Sperm interaction with the uterine innate immune system: toll-like receptor 2 (TLR2) is a main sensor in cattle. Reprod Fertil Dev. 2021;34(2):139-48. http://doi.org/10.1071/RD21265. PMid:35231265.

Akthar I, Suarez SS, Morillo VA, Sasaki M, Ezz MA, Takahashi KI, Shimada M, Marey MA, Miyamoto A. Sperm enter glands of preovulatory bovine endometrial explants and initiate inflammation. Reproduction. 2020;159(2):181-92. http://doi.org/10.1530/REP-19-0414. PMid:31794421.

Appiah MO, Wang J, Lu W. Microflora in the reproductive tract of cattle. Agriculture. 2020;10(6):232. http://doi.org/10.3390/agriculture10060232.

Ardon F, Markello RD, Hu L, Deutsch ZI, Tung CK, Wu M, Suarez SS. Dynamics of bovine sperm interaction with epithelium differ between oviductal isthmus and ampulla. Biol Reprod. 2016;95(4):90. http://doi.org/10.1095/biolreprod.116.140632. PMid:27605344.

Bailey JL, Bilodeau JF, Cormier N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J Androl. 2000;21(1):1-7. http://doi.org/10.1002/j.1939-4640.2000.tb03268.x. PMid:10670514.

Ballas P, Reinländer U, Schlegl R, Ehling-Schulz M, Drillich M, Wagener K. Characterization of intrauterine cultivable aerobic microbiota at the time of insemination in dairy cows with and without mild endometritis. Theriogenology. 2021;159:28-34. http://doi.org/10.1016/j.theriogenology.2020.10.018. PMid:33113441.

Carballada R, Esponda P. Fate and distribution of seminal plasma proteins in the genital tract of the female rat after natural mating. J Reprod Fertil. 1997;109(2):325-35. http://doi.org/10.1530/jrf.0.1090325. PMid:9155743.

Chang H, Suarez SS. Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol Reprod. 2012;86(5):140, 1-8. http://doi.org/10.1095/biolreprod.111.096578. PMid:22337334.

Cormier N, Bailey JL. A differential mechanism is involved during heparin- and cryopreservation-induced capacitation of bovine spermatozoa. Biol Reprod. 2003;69(1):177-85. http://doi.org/10.1095/biolreprod.102.011056. PMid:12620931.

Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction. 2012;144(6):649-60. http://doi.org/10.1530/REP-12-0279. PMid:23028122.

Demott RP, Suarez SS. Hyperactivated sperm progress in the mouse oviduct. Biol Reprod. 1992;46(5):779-85. http://doi.org/10.1095/biolreprod46.5.779. PMid:1591334.

Doak RL, Hall A, Dale HE. Longevity of spermatozoa in the reproductive tract of the bitch. J Reprod Fertil. 1967;13(1):51-8. http://doi.org/10.1530/jrf.0.0130051. PMid:6066781.

Dobrowolski W, Hafez ES. Transport and distribution of spermatozoa in the reproductive tract of the cow. J Anim Sci. 1970;31(5):940-3. http://doi.org/10.2527/jas1970.315940x. PMid:5481271.

Dunn BF, Picologlou BF. Viscoelastic properties of cumulus oöphorus. Biorheology. 1976;13(6):379-84. http://doi.org/10.3233/BIR-1976-13605. PMid:1009242.

Elesh IF, Marey MA, Zinnah MA, Akthar I, Kawai T, Naim F, Goda W, Rawash ARA, Sasaki M, Shimada M, Miyamoto A. Peptidoglycan switches off the TLR2-mediated sperm recognition and triggers sperm localization in the bovine endometrium. Front Immunol. 2021;11:619408. http://doi.org/10.3389/fimmu.2020.619408. PMid:33643300.

Ellington JE. The bovine oviduct and its role in reproduction: a review of the literature. Cornell Vet. 1991;81(3):313-28. PMid:1879144.

Elweza AE, Ezz MA, Acosta TJ, Talukder AK, Shimizu T, Hayakawa H, Shimada M, Imakawa K, Zaghloul AH, Miyamoto A. A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro. Mol Reprod Dev. 2018;85(3):215-26. http://doi.org/10.1002/mrd.22955. PMid:29337420.

Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87(6):989-99. http://doi.org/10.1189/jlb.1209775. PMid:20179153.

Ezz MA, Mansouri A, Akthar I, Yousef MS, Kowsar R, Miyamoto A. Hyaluronan regulates sperm-induced inflammatory response by enhancing sperm attachment to bovine endometrial epithelial cells via CD44: in-silico and in-vitro approaches. Front Endocrinol (Lausanne). 2023;14:1134868. http://doi.org/10.3389/fendo.2023.1134868. PMid:37234812.

Ezz MA, Marey MA, Elweza AE, Kawai T, Heppelmann M, Pfarrer C, Balboula AZ, Montaser A, Imakawa K, Zaabel SM, Shimada M, Miyamoto A. TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One. 2019;14(4):e0214516. http://doi.org/10.1371/journal.pone.0214516. PMid:30995239.

Ferraz MA, Morató R, Yeste M, Arcarons N, Pena AI, Tamargo C, Hidalgo CO, Muiño R, Mogas T. Evaluation of sperm subpopulation structure in relation to in vitro sperm-oocyte interaction of frozen-thawed semen from Holstein bulls. Theriogenology. 2014;81(8):1067-72. http://doi.org/10.1016/j.theriogenology.2014.01.033. PMid:24581584.

Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, Negishi H, Liu Z, Richards JS, Shimada M. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod. 2011;26(10):2799-806. http://doi.org/10.1093/humrep/der234. PMid:21775336.

Gaddum-Rosse P. Some observations on sperm transport through the uterotubal junction of the rat. Am J Anat. 1981;160(3):333-41. http://doi.org/10.1002/aja.1001600309. PMid:6894349.

Gillan L, Evans G, Maxwell WM. Capacitation status and fertility of fresh and frozen-thawed ram spermatozoa. Reprod Fertil Dev. 1997;9(5):481-7. http://doi.org/10.1071/R96046. PMid:9418976.

Gualtieri R, Talevi R. Selection of highly fertilization-competent bovine spermatozoa through adhesion to the Fallopian tube epithelium in vitro. Reproduction. 2003;125(2):251-8. http://doi.org/10.1530/rep.0.1250251. PMid:12578539.

Guidobaldi HA, Teves ME, Uñates DR, Anastasía A, Giojalas LC. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One. 2008;3(8):e3040. http://doi.org/10.1371/journal.pone.0003040. PMid:18725941.

Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P, Suarez SS. Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biol Reprod. 2006;75(4):501-7. http://doi.org/10.1095/biolreprod.106.053306. PMid:16790686.

Gwathmey TM, Ignotz GG, Suarez SS. PDC-109 (BSP-A1/A2) promotes bull sperm binding to oviductal epithelium in vitro and may be involved in forming the oviductal sperm reservoir. Biol Reprod. 2003;69(3):809-15. http://doi.org/10.1095/biolreprod.102.010827. PMid:12748117.

Harper CV, Barratt CL, Publicover SJ. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca(2+)](i) oscillations and cyclical transitions in flagellar beating. J Biol Chem. 2004;279(44):46315-25. http://doi.org/10.1074/jbc.M401194200. PMid:15322137.

Hawk HW. Transport and fate of spermatozoa after insemination of cattle. J Dairy Sci. 1987;70(7):1487-503. http://doi.org/10.3168/jds.S0022-0302(87)80173-X. PMid:3305615.

Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol. 2002;250(1):208-17. http://doi.org/10.1006/dbio.2002.0797. PMid:12297107.

Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca (2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod. 2001;65(5):1606-15. http://doi.org/10.1095/biolreprod65.5.1606. PMid:11673282.

Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68(5):1590-6. http://doi.org/10.1095/biolreprod.102.011320. PMid:12606347.

Ho K, Wolff CA, Suarez SS. CatSper-null mutant spermatozoa are unable to ascend beyond the oviductal reservoir. Reprod Fertil Dev. 2009;21(2):345-50. http://doi.org/10.1071/RD08183. PMid:19210926.

Hu L, Li Q, Yang P, Gandahi JA, Arain TS, Le Y, Zhang Q, Liu T, Y Waqas M, Ahmad N, Liu Y, Chen Q. Expression of TLR2/4 on epididymal spermatozoa of the Chinese soft-shelled turtle Pelodiscus sinensis during the hibernation season. Anat Rec (Hoboken). 2016;299(11):1578-84. http://doi.org/10.1002/ar.23463. PMid:27532861.

Hunter RH. Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J Reprod Fertil. 1981;63(1):109-17. http://doi.org/10.1530/jrf.0.0630109. PMid:6895091.

Ignotz GG, Cho MY, Suarez SS. Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol Reprod. 2007;77(6):906-13. http://doi.org/10.1095/biolreprod.107.062505. PMid:17715429.

Jansen RP. Cyclic changes in the human fallopian tube isthmus and their functional importance. Am J Obstet Gynecol. 1980;136(3):292-308. http://doi.org/10.1016/0002-9378(80)90853-4. PMid:6892541.

Katz DF, Yanagimachi R, Dresdner RD. Movement characteristics and power output of guinea-pig and hamster spermatozoa in relation to activation. J Reprod Fertil. 1978;52(1):167-72. http://doi.org/10.1530/jrf.0.0520167. PMid:621693.

Katz DF, Yanagimachi R. Movement characteristics of hamster and guinea pig spermatozoa upon attachment to the zona pellucida. Biol Reprod. 1981;25(4):785-91. http://doi.org/10.1095/biolreprod25.4.785. PMid:7306652.

Kim J, Kim J. Viscoelastic characterization of mouse zona pellucida. IEEE Trans Biomed Eng. 2013;60(2):569-75. http://doi.org/10.1109/TBME.2012.2230444. PMid:23212311.

Kodithuwakku SP, Miyamoto A, Wijayagunawardane MP. Spermatozoa stimulate prostaglandin synthesis and secretion in bovine oviductal epithelial cells. Reproduction. 2007;133(6):1087-94. http://doi.org/10.1530/REP-06-0201. PMid:17636163.

Koyama H, Tsutsumi Y, Suzuki H. Observations on sperm penetration into the uterine gland of the rabbit, sow and cow. Jpn J Zootech Sci. 1986;57(6):512-23.

López-Gatius F. Site of semen deposition in cattle: a review. Theriogenology. 2000;53(7):1407-14. http://doi.org/10.1016/S0093-691X(00)00283-1. PMid:10898210.

Ma D, Marey MA, Shimada M, Miyamoto A. Toll-like Receptor 2 is involved in calcium influx and acrosome reaction to facilitate sperm penetration to oocytes during in vitro fertilization in cattle. Front Cell Dev Biol. 2022;10:810961. http://doi.org/10.3389/fcell.2022.810961. PMid:35281105.

Mansouri A, Yousef MS, Kowsar R, Usui N, Akthar I, Miyamoto A. Sperm activate TLR2/TLR1 heterodimerization to induce a weak proinflammatory response in the bovine uterus. Front Immunol. 2023;14:1158090. http://doi.org/10.3389/fimmu.2023.1158090. PMid:37180107.

Marey MA, Liu J, Kowsar R, Haneda S, Matsui M, Sasaki M, Takashi S, Hayakawa H, Wijayagunawardane MP, Hussein FM, Miyamoto A. Bovine oviduct epithelial cells downregulate phagocytosis of sperm by neutrophils: prostaglandin E2 as a major physiological regulator. Reproduction. 2013;147(2):211-9. http://doi.org/10.1530/REP-13-0375. PMid:24255155.

Marey MA, Ma D, Yoshino H, Elesh IF, Zinnah MA, Fiorenza MF, Moriyasu S, Miyamoto A. Sperm induce proinflammatory responses in the uterus and peripheral blood immune cells of artificially inseminated cows. J Reprod Dev. 2023;69(2):95-102. http://doi.org/10.1262/jrd.2022-124. PMid:36775285.

Marquez B, Suarez SS. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2+ influx. Biol Reprod. 2007;76(4):660-5. http://doi.org/10.1095/biolreprod.106.055038. PMid:17182893.

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-73. http://doi.org/10.1128/CMR.00046-08. PMid:19366914.

Monlish DA, Greenberg ZJ, Bhatt ST, Leonard KM, Romine MP, Dong Q, Bendesky L, Duncavage EJ, Magee JA, Schuettpelz LG. TLR2/6 signaling promotes the expansion of premalignant hematopoietic stem and progenitor cells in the NUP98-HOXD13 mouse model of MDS. Exp Hematol. 2020;88:42-55. http://doi.org/10.1016/j.exphem.2020.07.001. PMid:32652111.

Morillo VA, Akthar I, Fiorenza MF, Takahashi KI, Sasaki M, Marey MA, Suarez SS, Miyamoto A. Toll-like receptor 2 mediates the immune response of the bovine oviductal ampulla to sperm binding. Mol Reprod Dev. 2020;87(10):1059-69. http://doi.org/10.1002/mrd.23422. PMid:32914493.

Mortimer ST, Swan MA, Mortimer D. Effect of seminal plasma on capacitation and hyperactivation in human spermatozoa. Hum Reprod. 1998;13(8):2139-46. http://doi.org/10.1093/humrep/13.8.2139. PMid:9756285.

Palladino MA, Savarese MA, Chapman JL, Dughi MK, Plaska D. Localization of Toll-like receptors on epididymal epithelial cells and spermatozoa. Am J Reprod Immunol. 2008;60(6):541-55. http://doi.org/10.1111/j.1600-0897.2008.00654.x. PMid:19032616.

Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991;44(1):102-7. http://doi.org/10.1095/biolreprod44.1.102. PMid:2015341.

Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA. 2003;100(25):14869-74. http://doi.org/10.1073/pnas.2136654100. PMid:14657366.

Rijsselaere T, Van Soom A, Van Cruchten S, Coryn M, Görtz K, Maes D, de Kruif A. Sperm distribution in the genital tract of the bitch following artificial insemination in relation to the time of ovulation. Reproduction. 2004;128(6):801-11. http://doi.org/10.1530/rep.1.00273. PMid:15579598.

Shalgi R, Smith TT, Yanagimachi R. A quantitative comparison of the passage of capacitated and uncapacitated hamster spermatozoa through the uterotubal junction. Biol Reprod. 1992;46(3):419-24. http://doi.org/10.1095/biolreprod46.3.419. PMid:1617015.

Sharif M, Hickl V, Juarez G, Di X, Kerns K, Sutovsky P, Bovin N, Miller DJ. Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Sci Rep. 2022;12(1):6446. http://doi.org/10.1038/s41598-022-10390-x. PMid:35440797.

Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development. 2008;135(11):2001-11. http://doi.org/10.1242/dev.020461. PMid:18434414.

Simons J, Olson S, Cortez R, Fauci L. The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. J Theor Biol. 2014;354:81-94. http://doi.org/10.1016/j.jtbi.2014.03.024. PMid:24685890.

Sobrero AJ, Macleod J. The immediate postcoital test. Fertil Steril. 1962;13(2):184-9. http://doi.org/10.1016/S0015-0282(16)34447-8. PMid:13914711.

Spencer TE, Hayashi K, Hu J, Carpenter KD. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol. 2005;68:85-122. http://doi.org/10.1016/S0070-2153(05)68004-0. PMid:16124997.

Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod. 1995;53(6):1280-5. http://doi.org/10.1095/biolreprod53.6.1280. PMid:8562682.

Suarez SS, Brockman K, Lefebvre R. Distribution of mucus and sperm in bovine oviducts after artificial insemination: the physical environment of the oviductal sperm reservoir. Biol Reprod. 1997;56(2):447-53. http://doi.org/10.1095/biolreprod56.2.447. PMid:9116145.

Suarez SS, Dai X. Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol Reprod. 1992;46(4):686-91. http://doi.org/10.1095/biolreprod46.4.686. PMid:1576267.

Suarez SS, Dai XB, DeMott RP, Redfern K, Mirando MA. Movement characteristics of boar sperm obtained from the oviduct or hyperactivated in vitro. J Androl. 1992;13(1):75-80. http://doi.org/10.1002/j.1939-4640.1992.tb01631.x. PMid:1551808.

Suarez SS, Katz DF, Owen DH, Andrew JB, Powell RL. Evidence for the function of hyperactivated motility in sperm. Biol Reprod. 1991;44(2):375-81. http://doi.org/10.1095/biolreprod44.2.375. PMid:2009336.

Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1):23-37. http://doi.org/10.1093/humupd/dmi047. PMid:16272225.

Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6):647-57. http://doi.org/10.1093/humupd/dmn029. PMid:18653675.

Suarez SS. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016;363(1):185-94. http://doi.org/10.1007/s00441-015-2244-2. PMid:26183721.

Tung CK, Hu L, Fiore AG, Ardon F, Hickman DG, Gilbert RO, Suarez SS, Wu M. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc Natl Acad Sci USA. 2015;112(17):5431-6. http://doi.org/10.1073/pnas.1500541112. PMid:25870286.

Vishwanath R. Artificial insemination: the state of the art. Theriogenology. 2003;59(2):571-84. http://doi.org/10.1016/S0093-691X(02)01241-4. PMid:12499005.

Vuorio J, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan-CD44 binding. PLOS Comput Biol. 2017;13(7):e1005663. http://doi.org/10.1371/journal.pcbi.1005663. PMid:28715483.

Wilmut I, Hunter RH. Sperm transport into the oviducts of heifers mated early in oestrus. Reprod Nutr Dev. 1984;24(4):461-8. http://doi.org/10.1051/rnd:19840411. PMid:6541363.

Yanagimachi R. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil. 1970;23(1):193-6. http://doi.org/10.1530/jrf.0.0230193. PMid:5472441.

Yániz JL, Lopez-Gatius F, Santolaria P, Mullins KJ. Study of the functional anatomy of bovine oviductal mucosa. Anat Rec. 2000;260(3):268-78. http://doi.org/10.1002/1097-0185(20001101)260:3<268::AID-AR60>3.0.CO;2-L. PMid:11066037.

Yousef MS, Marey MA, Hambruch N, Hayakawa H, Shimizu T, Hussien HA, Abdel-Razek AK, Pfarrer C, Miyamoto A. Sperm binding to oviduct epithelial cells enhances TGFB1 and IL10 expressions in epithelial cells as well as neutrophils in vitro: prostaglandin E2 as a main regulator of anti-Inflammatory response in the bovine oviduct. PLoS One. 2016;11(9):e0162309. http://doi.org/10.1371/journal.pone.0162309. PMid:27662642.

Zhu X, Shi D, Li X, Gong W, Wu F, Guo X, Xiao H, Liu L, Zhou H. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α. Cell Signal. 2016;28(3):148-56. http://doi.org/10.1016/j.cellsig.2015.12.002. PMid:26658093.
 


Submitted date:
04/03/2024

Accepted date:
06/25/2024

66bb9729a953951cee527b54 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections