Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0051
Animal Reproduction (AR)
Thematic Section: 40th Annual Meeting of the Association of Embryo Technology in Europe (AETE)

Bovine embryo production in vitro: evolution of culture media and commercial perspectives

Rebecca L. Krisher; Jason R. Herrick

Downloads: 2
Views: 145

Abstract

In vitro produced embryos exhibit lower viability compared to their in vivo counterparts. Mammalian preimplantation embryos have the ability to reach the blastocyst stage in diverse culture media, showcasing considerable metabolic adaptability, which complicates the identification of optimal developmental conditions. Despite embryos successfully progressing to the blastocyst stage, adaptation to suboptimal culture environments may jeopardize blastocyst viability, cryotolerance, and implantation potential. Enhancing our capacity to support preimplantation embryonic development in vitro requires a deeper understanding of fundamental embryo physiology, including preferred metabolic substrates and pathways utilized by high-quality embryos. Armed with this knowledge, it becomes achievable to optimize culture conditions to support normal, in vivo-like embryo physiology, mitigate adaptive stress, and enhance viability. The objective of this review is to summarize the evolution of culture media for bovine embryos, highlighting significant milestones and remaining challenges.

Keywords

embryo culture, in vitro embryo production, culture media, embryo metabolism

References

Abe H, Hoshi H. Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology. Cytotechnology. 1997;23(1-3):171-83. http://doi.org/10.1023/A:1007929826186. PMid:22358533.

Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith LC. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. 2020;10(12):2196. http://doi.org/10.3390/ani10122196. PMid:33255250.

Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction. 2017;154(3):153-68. http://doi.org/10.1530/REP-17-0054. PMid:28630101.

Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep. 2022;12(1):7503. http://doi.org/10.1038/s41598-022-11447-7. PMid:35525843.

Barberet J, Ducreux B, Bruno C, Guilleman M, Simonot R, Lieury N, Guilloteau A, Bourc’his D, Fauque P. Comparison of oocyte vitrification using a semi-automated or a manual closed system in human siblings: survival and transcriptomic analyses. J Ovarian Res. 2022;15(1):128. http://doi.org/10.1186/s13048-022-01064-3. PMid:36464714.

Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev. 2007;74(10):1345-53. http://doi.org/10.1002/mrd.20604. PMid:17342740.

Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOM(AA) medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5(2):133-40. http://doi.org/10.1016/S1472-6483(10)61615-X. PMid:12419037.

Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90(3):473-83. http://doi.org/10.1016/j.fertnstert.2008.08.010. PMid:18847602.

Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci USA. 1967;58(2):560-7. http://doi.org/10.1073/pnas.58.2.560. PMid:5233459.

Biggers JD. Reflections on the culture of the preimplantation embryo. Int J Dev Biol. 1998;42(7):879-84. PMid:9853817.

Brinster RL. Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil. 1965;10(2):227-40. http://doi.org/10.1530/jrf.0.0100227. PMid:5836270.

Cimadomo D, Rienzi L, Giancani A, Alviggi E, Dusi L, Canipari R, Noli L, Ilic D, Khalaf Y, Ubaldi FM, Capalbo A. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Hum Reprod. 2019;34(9):1746-61. http://doi.org/10.1093/humrep/dez119. PMid:31419301.

Del Collado M, Andrade GM, Gonçalves NJN, Fortini S, Perecin F, Carriero MM. The embryo non-invasive pre-implantation diagnosis era: how far are we? Anim Reprod. 2023;20(2):e20230069. http://doi.org/10.1590/1984-3143-ar2023-0069. PMid:37720726.

Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, Bankowski B, Stones R, Storr A, Miller A, Adaniya G, van Tol R, Hanson R, Aizpurua J, Giardini L, Johnston A, Van Nguyen T, Dakka MA, Perugini D, Perugini M. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105-17. http://doi.org/10.1016/j.rbmo.2022.07.018. PMid:36117079.

Du ZF, Wales RG. Effect of culture from the zygote stage on the metabolism of glucose and glutamine by 2-cell embryos and blastocysts recovered from outbred or F1 hybrid female mice. Reprod Fertil Dev. 1993a;5(5):555-65. http://doi.org/10.1071/RD9930555. PMid:8190908.

Du ZF, Wales RG. Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reprod Fertil Dev. 1993b;5(4):383-93. http://doi.org/10.1071/RD9930383. PMid:8153388.

Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303-16. http://doi.org/10.1016/j.fertnstert.2014.11.015. PMid:25497448.

Ellington JE, Carney EW, Farrell PB, Simkin ME, Foote RH. Bovine 1-2-cell embryo development using a simple medium in three oviduct epithelial cell coculture systems. Biol Reprod. 1990;43(1):97-104. http://doi.org/10.1095/biolreprod43.1.97. PMid:2393695.

Enatsu N, Miyatsuka I, An LM, Inubushi M, Enatsu K, Otsuki J, Iwasaki T, Kokeguchi S, Shiotani M. A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation. Reprod Med Biol. 2022;21(1):e12443. http://doi.org/10.1002/rmb2.12443. PMid:35386375.

Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod. 1994;50(5):1027-33. http://doi.org/10.1095/biolreprod50.5.1027. PMid:8025158.

Ermisch AF, Herrick JR, Pasquariello R, Dyer MC, Lyons SM, Broeckling CD, Rajput SK, Schoolcraft WB, Krisher RL. A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos. Sci Rep. 2020;10(1):9263. http://doi.org/10.1038/s41598-020-66019-4. PMid:32518371.

Eyestone WH, Jones JM, First NL. Some factors affecting the efficacy of oviduct tissue-conditioned medium for the culture of early bovine embryos. J Reprod Fertil. 1991;92(1):59-64. http://doi.org/10.1530/jrf.0.0920059. PMid:2056496.

Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev. 2023;36(2):133-48. http://doi.org/10.1071/RD23164. PMid:38064189.

Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology. 2001;55(1):151-70. http://doi.org/10.1016/S0093-691X(00)00452-0. PMid:11198080.

Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://doi.org/10.1002/mrd.20494. PMid:16804881.

Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673-9. http://doi.org/10.1530/jrf.0.0990673. PMid:8107053.

Fujii T, Naito A, Hirayama H, Kashima M, Yoshino H, Hanamure T, Domon Y, Hayakawa H, Watanabe T, Moriyasu S, Kageyama S. Potential of preimplantation genomic selection for carcass traits in Japanese Black cattle. J Reprod Dev. 2019;65(3):251-8. http://doi.org/10.1262/jrd.2019-009. PMid:30905888.

Gandhi AP, Lane M, Gardner DK, Krisher RL. A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum Reprod. 2000;15(2):395-401. http://doi.org/10.1093/humrep/15.2.395. PMid:10655312.

Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994;50(2):390-400. http://doi.org/10.1095/biolreprod50.2.390. PMid:8142556.

Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175-80. http://doi.org/10.1016/S0015-0282(01)02888-6. PMid:11730746.

Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367-82. http://doi.org/10.1093/humupd/3.4.367. PMid:9459282.

Gardner DK, Lane MW, Lane M. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Mol Reprod Dev. 2000;57(3):256-61. http://doi.org/10.1002/1098-2795(200011)57:3<256::AID-MRD7>3.0.CO;2-P. PMid:11013433.

Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242(1):103-5. http://doi.org/10.1002/jez.1402420115. PMid:3598508.

Goto K, Iwai N, Takuma Y, Nakanishi Y. Co-culture of in vitro fertilized bovine embryos with different cell monolayers. J Anim Sci. 1992;70(5):1449-53. http://doi.org/10.2527/1992.7051449x. PMid:1526913.

Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Commun Signal. 2023;21(1):210. http://doi.org/10.1186/s12964-023-01221-1. PMid:37596609.

Hajek J, Baron R, Sandi-Monroy N, Schansker S, Schoepper B, Depenbusch M, Schultze-Mosgau A, Neumann K, Gagsteiger F, von Otte S, Griesinger G. A randomised, multi-center, open trial comparing a semi-automated closed vitrification system with a manual open system in women undergoing IVF. Hum Reprod. 2021;36(8):2101-10. http://doi.org/10.1093/humrep/deab140. PMid:34131726.

Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod. 2019;101(3):526-37. http://doi.org/10.1093/biolre/ioz030. PMid:31220231.

Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020;98(11):skaa288. http://doi.org/10.1093/jas/skaa288. PMid:33141879.

Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123(4):479-86. http://doi.org/10.1530/rep.0.1230479. PMid:11914110.

Harvey AJ, Santos AN, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev. 2007;74(3):290-9. http://doi.org/10.1002/mrd.20617. PMid:16998843.

Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online. 2021;42(1):39-54. http://doi.org/10.1016/j.rbmo.2020.11.011. PMid:33303367.

Hernandez-Ledezma JJ, Villanueva C, Sikes JD, Roberts RM. Effects of CZB versus medium 199 and of conditioning culture media with either bovine oviductal epithelial cells or buffalo rat liver cells on the development of bovine zygotes derived by in vitro maturation-in vitro fertilization procedures. Theriogenology. 1993;39(6):1267-77. http://doi.org/10.1016/0093-691X(93)90229-X.

Herrick JR, Greene-Ermisch AF, Schoolcraft WB, Krisher RL. Exogenous growth factors do not affect the development of individually cultured murine embryos. J Assist Reprod Genet. 2018;35(3):523-31. http://doi.org/10.1007/s10815-017-1103-3. PMid:29270871.

Herrick JR, Lyons SM, Greene AF, Broeckling CD, Schoolcraft WB, Krisher RL. Direct and osmolarity-dependent effects of glycine on preimplantation bovine embryos. PLoS One. 2016;11(7):e0159581. http://doi.org/10.1371/journal.pone.0159581. PMid:27459477.

Herrick JR, Rajput S, Pasquariello R, Ermisch A, Santiquet N, Schoolcraft WB, Krisher RL. Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reprod Fertil. 2020;1(1):51-65. http://doi.org/10.1530/RAF-20-0033. PMid:35128423.

Huang B, Luo X, Wu R, Qiu L, Lin S, Huang X, Wu J. Evaluation of non-invasive gene detection in preimplantation embryos: a systematic review and meta-analysis. J Assist Reprod Genet. 2023;40(6):1243-53. http://doi.org/10.1007/s10815-023-02760-9. PMid:36952146.

Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105-12. http://doi.org/10.1073/pnas.1907472116. PMid:31235575.

Isaac E, Berg DK, Pfeffer PL. Using extended growth of cattle embryos in culture to gain insights into bovine developmental events on embryonic days 8 to 10. Theriogenology. 2024;214:10-20. http://doi.org/10.1016/j.theriogenology.2023.10.004. PMid:37837723.

Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, Scholte Op Reimer Y, Castel G, Bruneau A, Maenhoudt N, Lammers J, Loubersac S, Freour T, Vankelecom H, David L, Rivron N. Human blastoids model blastocyst development and implantation. Nature. 2022;601(7894):600-5. http://doi.org/10.1038/s41586-021-04267-8. PMid:34856602.

Kane MT. Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae. Biol Reprod. 1979;20(2):323-32. http://doi.org/10.1095/biolreprod20.2.323. PMid:572233.

Keskintepe L, Burnley CA, Brackett BG. Production of viable bovine blastocysts in defined in vitro conditions. Biol Reprod. 1995;52(6):1410-7. http://doi.org/10.1095/biolreprod52.6.1410. PMid:7632849.

Kim JH, Funahashi H, Niwa K, Okuda K. Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium. Theriogenology. 1993;39(4):875-86. http://doi.org/10.1016/0093-691X(93)90425-5. PMid:16727260.

Kim Y, Kim I, Shin K. A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Exp Mol Med. 2023;55(10):2127-37. http://doi.org/10.1038/s12276-023-01097-8. PMid:37779144.

Krisher RL, Gibbons JR, Gwazdauskas FC. Effectiveness of Menuzo’s B2 medium with buffalo rat liver cells for development of in vitro matured/in vitro fertilized bovine oocytes. J Assist Reprod Genet. 1998;15(1):50-3. http://doi.org/10.1023/A:1022582422932. PMid:9493067.

Krisher RL, Heuberger AL, Paczkowski M, Stevens J, Pospisil C, Prather RS, Sturmey RG, Herrick JR, Schoolcraft WB. Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod Fertil Dev. 2015;27(4):602-20. http://doi.org/10.1071/RD14359. PMid:25763765.

Krisher RL, Lane M, Bavister BD. Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol Reprod. 1999;60(6):1345-52. http://doi.org/10.1095/biolreprod60.6.1345. PMid:10330091.

Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311-20. http://doi.org/10.1002/mrd.22037. PMid:22431437.

Krisher RL. In vivo and in vitro environmental effects on mammalian oocyte quality. Annu Rev Anim Biosci. 2013;1(1):393-417. http://doi.org/10.1146/annurev-animal-031412-103647. PMid:25387025.

Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82 E-Suppl:E14-23. PMid:15471793.

Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://doi.org/10.1093/molehr/gat082. PMid:24233546.

Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11(9):1975-8. http://doi.org/10.1093/oxfordjournals.humrep.a019527. PMid:8921074.

Lange-Consiglio A, Lazzari B, Pizzi F, Idda A, Cremonesi F, Capra E. Amniotic microvesicles impact hatching and pregnancy percentages of in vitro bovine embryos and blastocyst microRNA expression versus in vivo controls. Sci Rep. 2020;10(1):501. http://doi.org/10.1038/s41598-019-57060-z. PMid:31949175.

Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev. 1992;31(3):189-94. http://doi.org/10.1002/mrd.1080310305. PMid:1554503.

Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil. 1991;91(2):543-56. http://doi.org/10.1530/jrf.0.0910543. PMid:2013878.

Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002;67(3):767-75. http://doi.org/10.1095/biolreprod.102.004481. PMid:12193383.

Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16-42. http://doi.org/10.1093/humupd/dmz033. PMid:31774124.

Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667-72. http://doi.org/10.1093/molehr/gan065. PMid:19019836.

Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22(12):3047-50. http://doi.org/10.1093/humrep/dem253. PMid:17956925.

Leese HJ. Human embryo culture: back to nature. J Assist Reprod Genet. 1998;15(8):466-8. http://doi.org/10.1023/A:1022526219202. PMid:9785193.

Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845-9. http://doi.org/10.1002/bies.10137. PMid:12210521.

Li Y, Donnelly CG, Rivera RM. Overgrowth syndrome. Vet Clin North Am Food Anim Pract. 2019;35(2):265-76. http://doi.org/10.1016/j.cvfa.2019.02.007. PMid:31103180.

Li Y, Sena Lopes J, Coy-Fuster P, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. 2022;17(11):1477-96. http://doi.org/10.1080/15592294.2022.2067938. PMid:35466858.

Liu Z, Foote RH. Effects of amino acids and alpha-amanitin on bovine embryo development in a simple protein-free medium. Mol Reprod Dev. 1997;46(3):278-85. http://doi.org/10.1002/(SICI)1098-2795(199703)46:3<278::AID-MRD6>3.0.CO;2-M. PMid:9041130.

Liu Z, Foote RH. Effects of amino acids on the development of in-vitro matured/in-vitro fertilization bovine embryos in a simple protein-free medium. Hum Reprod. 1995;10(11):2985-91. http://doi.org/10.1093/oxfordjournals.humrep.a135834. PMid:8747059.

Liu Z, Foote RH. Sodium chloride, osmolyte, and osmolarity effects on blastocyst formation in bovine embryos produced by in vitro fertilization (IVF) and cultured in simple serum-free media. J Assist Reprod Genet. 1996;13(7):562-8. http://doi.org/10.1007/BF02066609. PMid:8844313.

Lledo B, Morales R, Antonio Ortiz J, Bernabeu A, Bernabeu R. Noninvasive preimplantation genetic testing using the embryo spent culture medium: an update. Curr Opin Obstet Gynecol. 2023;35(4):294-9. http://doi.org/10.1097/GCO.0000000000000881. PMid:37144571.

Lonergan P, Fair T. Maturation of Oocytes in vitro. Annu Rev Anim Biosci. 2016;4(1):255-68. http://doi.org/10.1146/annurev-animal-022114-110822. PMid:26566159.

Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Ramírez MÁ, Yáñez-Mó M, Rizos D. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction. 2017;153(4):461-70. http://doi.org/10.1530/REP-16-0384. PMid:28104825.

Machtinger R, Racowsky C. Culture systems: single step. Methods Mol Biol. 2012;912:199-209. http://doi.org/10.1007/978-1-61779-971-6_12. PMid:22829376.

Macklon NS, Pieters MH, Hassan MA, Jeucken PH, Eijkemans MJ, Fauser BC. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17(10):2700-5. http://doi.org/10.1093/humrep/17.10.2700. PMid:12351551.

Marei WFA, Leroy JLMR. Cellular stress responses in oocytes: molecular changes and clinical implications. Adv Exp Med Biol. 2022;1387:171-89. http://doi.org/10.1007/5584_2021_690. PMid:34921349.

Marin D, Scott RT Jr. Extracellular vesicles: a promising tool for assessment of embryonic competence. Curr Opin Obstet Gynecol. 2018;30(3):171-8. http://doi.org/10.1097/GCO.0000000000000458. PMid:29664793.

Matsuyama K, Miyakoshi H, Fukui Y. Effect of glucose levels during the in vitro culture in synthetic oviduct fluid medium on in vitro development of bovine oocytes matured and fertilized in vitro. Theriogenology. 1993;40(3):595-605. http://doi.org/10.1016/0093-691X(93)90412-X. PMid:16727342.

Menjivar NG, Gad A, Gebremedhn S, Ghosh S, Tesfaye D. Granulosa cell-derived extracellular vesicles mitigate the detrimental impact of thermal stress on bovine oocytes and embryos. Front Cell Dev Biol. 2023;11:1142629. http://doi.org/10.3389/fcell.2023.1142629. PMid:37091982.

Ming H, Zhang M, Rajput S, Logsdon D, Zhu L, Schoolcraft WB, Krisher R, Jiang Z, Yuan Y. In vitro culture alters cell lineage composition and cellular metabolism of bovine blastocyst. bioRxiv. 2023. http://doi.org/10.1101/2023.06.09.544379. PMid:37333292.

Moreira F, Paula-Lopes FF, Hansen PJ, Badinga L, Thatcher WW. Effects of growth hormone and insulin-like growth factor-I on development of in vitro derived bovine embryos. Theriogenology. 2002;57(2):895-907. http://doi.org/10.1016/S0093-691X(01)00694-X. PMid:11991392.

Oliveira CS, Camargo LSA, da Silva MVGB, Saraiva NZ, Quintão CC, Machado MA. Embryo biopsies for genomic selection in tropical dairy cattle. Anim Reprod. 2023;20(2):e20230064. http://doi.org/10.1590/1984-3143-ar2023-0064. PMid:37547565.

Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction. 2014;148(4):429-39. http://doi.org/10.1530/REP-14-0015. PMid:25062802.

Pasquariello R, Zhang M, Herrick JR, Ermisch A, Becker J, Schoolcraft WB, Barfield JP, Yuan Y, Krisher RL. Lipid enriched reduced nutrient culture medium improves bovine blastocyst formation. Reprod Fertil. 2023;4(4):e230057. http://doi.org/10.1530/RAF-23-0057. PMid:37971749.

Petters RM, Johnson BH, Reed ML, Archibong AE. Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J Reprod Fertil. 1990;89(1):269-75. http://doi.org/10.1530/jrf.0.0890269. PMid:2374120.

Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, Leese HJ, Harris SE. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod. 2010;16(8):557-69. http://doi.org/10.1093/molehr/gaq040. PMid:20571076.

Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, Liu L, Sakurai M, Ye J, Ming H, Yu L, Li B, Jiang Z, Wu J. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell. 2023;30(5):611-616.e7. http://doi.org/10.1016/j.stem.2023.04.003. PMid:37146582.

Quinn P. Culture systems: sequential. Methods Mol Biol. 2012;912:211-30. http://doi.org/10.1007/978-1-61779-971-6_13. PMid:22829377.

Renard JP, Philippon A, Menezo Y. In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil. 1980;58(1):161-4. http://doi.org/10.1530/jrf.0.0580161. PMid:7359473.

Rieger D, Grisart B, Semple E, Van Langendonckt A, Betteridge KJ, Dessy F. Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J Reprod Fertil. 1995;105(1):91-8. http://doi.org/10.1530/jrf.0.1050091. PMid:7490721.

Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev. 1992a;4(5):547-57. http://doi.org/10.1071/RD9920547. PMid:1299829.

Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the metabolism of glucose and glutamine by cattle embryos produced and co-cultured in vitro. J Reprod Fertil. 1992b;95(2):585-95. http://doi.org/10.1530/jrf.0.0950585. PMid:1518013.

Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev. 2019;32(2):65-81. http://doi.org/10.1071/RD19276. PMid:32188559.

Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68(1):236-43. http://doi.org/10.1095/biolreprod.102.007799. PMid:12493719.

Rosenkrans CF Jr, First NL. Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J Anim Sci. 1994;72(2):434-7. http://doi.org/10.2527/1994.722434x. PMid:8157527.

Rosenkrans CF Jr, Zeng GQ, MCNamara GT, Schoff PK, First NL. Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod. 1993;49(3):459-62. http://doi.org/10.1095/biolreprod49.3.459. PMid:8399836.

Roy TK, Brandi S, Tappe NM, Bradley CK, Vom E, Henderson C, Lewis C, Battista K, Hobbs B, Hobbs S, Syer J, Lanyon SR, Dopheide SM, Peura TT, McArthur SJ, Bowman MC, Stojanov T. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Hum Reprod. 2014;29(11):2431-8. http://doi.org/10.1093/humrep/deu214. PMid:25164022.

Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1-13. http://doi.org/10.1016/j.ajog.2020.04.035. PMid:32470458.

Rubio C, Rienzi L, Navarro-Sánchez L, Cimadomo D, García-Pascual CM, Albricci L, Soscia D, Valbuena D, Capalbo A, Ubaldi F, Simón C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112(3):510-9. http://doi.org/10.1016/j.fertnstert.2019.04.038. PMid:31200971.

Salih M, Austin C, Warty RR, Tiktin C, Rolnik DL, Momeni M, Rezatofighi H, Reddy S, Smith V, Vollenhoven B, Horta F. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum Reprod Open. 2023;2023(3):hoad031. http://doi.org/10.1093/hropen/hoad031. PMid:37588797.

Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The role of microRNAs in mammalian fertility: from gametogenesis to embryo implantation. Int J Mol Sci. 2020;21(2):585. http://doi.org/10.3390/ijms21020585. PMid:31963271.

Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci. 2020;103(12):11930-44. http://doi.org/10.3168/jds.2020-19068. PMid:33041033.

Santos ECD, Fonseca AMD Jr, Lima CB, Ispada J, Silva JVAD, Milazzotto MP. Less is more: reduced nutrient concentration during in vitro culture improves embryo production rates and morphophysiology of bovine embryos. Theriogenology. 2021;173:37-47. http://doi.org/10.1016/j.theriogenology.2021.07.010. PMid:34329894.

Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18(6):700-8. http://doi.org/10.1038/ncb3347. PMid:27144686.

Silvestri G, Canedo-Ribeiro C, Serrano-Albal M, Labrecque R, Blondin P, Larmer SG, Marras G, Tutt DAR, Handyside AH, Farré M, Sinclair KD, Griffin DK. Preimplantation genetic testing for aneuploidy improves live birth rates with in vitro produced bovine embryos: a blind retrospective study. Cells. 2021;10(9):2284. http://doi.org/10.3390/cells10092284. PMid:34571932.

Siqueira LG, Hansen PJ. Sex differences in response of the bovine embryo to colony-stimulating factor 2. Reproduction. 2016;152(6):645-54. http://doi.org/10.1530/REP-16-0336. PMid:27601717.

Sirard MA. 40 years of bovine IVF in the new genomic selection context. Reproduction. 2018;156(1):R1-7. http://doi.org/10.1530/REP-18-0008. PMid:29636405.

Smith DG, Sturmey RG. Parallels between embryo and cancer cell metabolism. Biochem Soc Trans. 2013;41(2):664-9. http://doi.org/10.1042/BST20120352. PMid:23514173.

Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod. 1999;61(3):731-40. http://doi.org/10.1095/biolreprod61.3.731. PMid:10456851.

Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction. 2006;132(6):829-37. http://doi.org/10.1530/REP-06-0073. PMid:17127743.

Sturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod. 2009a;24(1):81-91. http://doi.org/10.1093/humrep/den346. PMid:18835872.

Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009b;44(Suppl 3):50-8. http://doi.org/10.1111/j.1439-0531.2009.01402.x. PMid:19660080.

Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev. 2017;63(4):353-7. http://doi.org/10.1262/jrd.2017-041. PMid:28552887.

Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology. 2012;77(8):1632-41. http://doi.org/10.1016/j.theriogenology.2011.12.008. PMid:22365693.

Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105(3):571-87. http://doi.org/10.1016/j.fertnstert.2016.01.035. PMid:26851765.

Swain JE. Controversies in ART: considerations and risks for uninterrupted embryo culture. Reprod Biomed Online. 2019;39(1):19-26. http://doi.org/10.1016/j.rbmo.2019.02.009. PMid:31109893.

Takahashi Y, First NL. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963-78. http://doi.org/10.1016/0093-691X(92)90096-A. PMid:16727096.

Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30(3):493-7. http://doi.org/10.1530/jrf.0.0300493. PMid:4672493.

Tesfaye D, Hailay T, Salilew-Wondim D, Hoelker M, Bitseha S, Gebremedhn S. Extracellular vesicle mediated molecular signaling in ovarian follicle: Implication for oocyte developmental competence. Theriogenology. 2020;150:70-74. http://doi.org/10.1016/j.theriogenology.2020.01.075. PMID: 32088041.

Thomas WK, Seidel GE Jr. Effects of cumulus cells on culture of bovine embryos derived from oocytes matured and fertilized in vitro. J Anim Sci. 1993;71(9):2506-10. http://doi.org/10.2527/1993.7192506x. PMid:8407663.

Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573-8. http://doi.org/10.1530/jrf.0.0890573. PMid:2401984.

Thompson JG, Simpson AC, Pugh PA, Tervit HR. Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol Reprod Dev. 1992;31(4):253-7. http://doi.org/10.1002/mrd.1080310405. PMid:1571159.

Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106(2):299-306. http://doi.org/10.1530/jrf.0.1060299. PMid:8699414.

Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118(1):47-55. http://doi.org/10.1530/reprod/118.1.47. PMid:10793625.

Turner KJ, Silvestri G, Black DH, Dobson G, Smith C, Handyside AH, Sinclair KD, Griffin DK. Karyomapping for simultaneous genomic evaluation and aneuploidy screening of preimplantation bovine embryos: the first live-born calves. Theriogenology. 2019;125:249-58. http://doi.org/10.1016/j.theriogenology.2018.11.014. PMid:30476758.

Vansteenbrugge A, Van Langendonckt A, Scutenaire C, Massip A, Dessy F. In vitro development of bovine embryos in Buffalo rat liver- or bovine oviduct-conditioned medium. Theriogenology. 1994;42(6):931-40. http://doi.org/10.1016/0093-691X(94)90116-Z. PMid:16727598.

VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-84. http://doi.org/10.1093/humrep/deaa013. PMid:32240301.

Viana JHM. 2022 statistics of embryo production and transfer in domestic farm animals: the main trends for the world embryo industry still stand. Embryo Technology Newsletter. 2023;41(4):20-38.

Voelkel SA, Hu YX. Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems. Theriogenology. 1992;37(5):1117-31. http://doi.org/10.1016/0093-691X(92)90109-5. PMid:16727109.

Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2-22. http://doi.org/10.1093/humupd/dmv034. PMid:26207016.

Wang S, Chen L, Fang J, Sun H. A compact, high-throughput semi-automated embryo vitrification system based on hydrogel. Reprod Biomed Online. 2024;48(5):103769. http://doi.org/10.1016/j.rbmo.2023.103769. PMid:38492415.

Whitten WK, Biggers JD. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil. 1968;17(2):399-401. http://doi.org/10.1530/jrf.0.0170399. PMid:5749384.

Yu L, Logsdon D, Pinzon-Arteaga CA, Duan J, Ezashi T, Wei Y, Ribeiro Orsi AE, Oura S, Liu L, Wang L, Liu K, Ding X, Zhan L, Zhang J, Nahar A, Stobbe C, Katz-Jaffe M, Schoolcraft WB, Tan T, Hon GC, Yuan Y, Wu J. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell. 2023;30(9):1246-1261.e9. http://doi.org/10.1016/j.stem.2023.08.002. PMid:37683605.
 


Submitted date:
04/21/2024

Accepted date:
08/20/2024

66ed6f96a95395147b03ac64 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections