Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0054
Animal Reproduction (AR)
Thematic Section: X International Symposium on Animal Biology of Reproduction (ISABR)

Gene editing in livestock: innovations and applications

Paula Rodriguez-Villamil; Benjamin Paul Beaton; Rebecca Lynn Krisher

Downloads: 1
Views: 101

Abstract

Gene editing technologies have revolutionized the field of livestock breeding, offering unprecedented opportunities to enhance animal welfare, productivity, and sustainability. This paper provides a comprehensive review of recent innovations and applications of gene editing in livestock, exploring the diverse applications of gene editing in livestock breeding, as well as the regulatory and ethical considerations, and the current challenges and prospects of the technology in the industry. Overall, this review underscores the transformative potential of gene editing in livestock breeding and its pivotal role in shaping the future of agriculture and biomedicine.

Keywords

gene-editing, livestock, production, biomodels, welfare

References

Andersen OM, Bøgh N, Landau AM, Pløen GG, Jensen AMG, Monti G, Ulhøi BP, Nyengaard JR, Jacobsen KR, Jørgensen MM, Holm IE, Kristensen ML, Alstrup AKO, Hansen ESS, Teunissen CE, Breidenbach L, Droescher M, Liu Y, Pedersen HS, Callesen H, Luo Y, Bolund L, Brooks DJ, Laustsen C, Small SA, Mikkelsen LF, Sørensen CB. A genetically modified minipig model for Alzheimer’s disease with SORL1 haploinsufficiency. Cell Rep Med. 2022;3(9):100740. http://doi.org/10.1016/j.xcrm.2022.100740. PMid:36099918.

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-57. http://doi.org/10.1038/s41586-019-1711-4. PMid:31634902.

Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H, Zhang Y, Xiao L, Fu Z. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci. 2014;57(2):263-8. http://doi.org/10.1007/s11427-013-4601-2. PMid:24430555.

Bevacqua RJ, Fernandez-Martín R, Savy V, Canel NG, Gismondi MI, Kues WA, Carlson DF, Fahrenkrug SC, Niemann H, Taboga OA, Ferraris S, Salamone DF. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology. 2016;86(8):1886-1896.e1. http://doi.org/10.1016/j.theriogenology.2016.06.010. PMid:27566851.

Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. J Exp Biol. 2020;223(Pt, Suppl 1):jeb207159. http://doi.org/10.1242/jeb.207159. PMid:32034040.

Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol. 2010;13(4):394-401. http://doi.org/10.1016/j.pbi.2010.04.010. PMid:20570209.

Burger BT, Beaton BP, Campbell MA, Brett BT, Rohrer MS, Plummer S, Barnes D, Jiang K, Naswa S, Lange J, Ott A, Alger E, Rincon G, Rounsley S, Betthauser J, Mtango NR, Benne JA, Hammerand J, Durfee CJ, Rotolo ML, Cameron P, Lied AM, Irby MJ, Nyer DB, Fuller CK, Gradia S, Kanner SB, Park KE, Waters J, Simpson S, Telugu BP, Salgado BC, Brandariz-Nuñez A, Rowland RRR, Culbertson M, Rice E, Cigan AM. Generation of a commercial-scale founder population of porcine reproductive and respiratory syndrome virus resistant pigs using CRISPR-Cas. CRISPR J. 2024;7(1):12-28. http://doi.org/10.1089/crispr.2023.0061. PMid:38353617.

Camargo LSA, Owen JR, Van Eenennaam AL, Ross PJ. Efficient one-step knockout by electroporation of ribonucleoproteins into zona-intact bovine embryos. Front Genet. 2020;11:570069. http://doi.org/10.3389/fgene.2020.570069. PMid:33133156.

Carlson DF, Lancto CA, Zang B, Kim E, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC. Production of hornless dairy cattle from genome edited cell lines. Nat Biotechnol. 2016;34(5):479-81. http://doi.org/10.1038/nbt.3560 PMid:27153274.

Carlson DF, Tan W, Lillico SG, Fahrenkug, SC. Efficient TALEN-Mediated Gene Knockout in Livestock. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(43):17382–87. http://doi.org/10.1073/pnas.1211446109.

Carpio Y, Estrada MP. Zebrafish as a genetic model organism. Biotecnol Apl. 2006;23:265-70.

Carriquiry MA, Elobeid AE, Hayes DJ, Swenson DA. Impacts of An African Swine Fever Outbreak in the United States: Implications on National and Iowa Agriculture. In: Proceedings of the Annual Meeting Agricultural and Applied Economics Association; 2021 Aug 1-3; Austin, Texas. Austin, Texas; Agricultural and Applied Economics Association; 2021. p. 1-34.

Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773-82. http://doi.org/10.1534/genetics.111.131433. PMid:21828278.

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12):e82. http://doi.org/10.1093/nar/gkr218. PMid:21493687.

Chen J, An B, Yu B, Peng X, Yuan H, Yang Q, Chen X, Yu T, Wang L, Zhang X, Wang H, Zou X, Pang D, Ouyang H, Tang X. CRISPR/Cas9-mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica. 2021;106(3):829-37. http://doi.org/10.3324/haematol.2019.224063. PMid:31974191.

Chen S, Lee B, Lee AY, Modzelewski AJ, He L. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. 2016;291(28):14457-67. http://doi.org/10.1074/jbc.M116.733154 PMid:27151215.

Clark J, Whitelaw B. A future for transgenic livestock. Nat Rev Genet. 2003;4(10):825-33. http://doi.org/10.1038/nrg1183. PMid:14526378.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23. http://doi.org/10.1126/science.1231143. PMid:23287718.

Cowan PJ, Hawthorne WJ, Nottle MB. Xenogeneic transplantation and tolerance in the era of CRISPR-Cas9. Curr Opin Organ Transplant. 2019;24(1):5-11. PMid:30480643.

Crane AT, Shen FX, Brown JL, Cormack W, Ruiz-Estevez M, Voth JP, Sawai T, Hatta T, Fujita M, Low WC. The american public is ready to accept human-animal chimera research. Stem Cell Reports. 2020;15(4):804-10. http://doi.org/10.1016/j.stemcr.2020.08.018. PMid:33007202.

Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10(8):e0136690. http://doi.org/10.1371/journal.pone.0136690. PMid:26305800.

Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Sci Rep. 2015;5(1):10482. http://doi.org/10.1038/srep10482. PMid:25994151.

Dong Z, Ge J, Li K, Xu Z, Liang D, Li J, Li J, Jia W, Li Y, Dong X, Cao S, Wang X, Pan J, Zhao Q. Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS One. 2011;6(12):e28897. http://doi.org/10.1371/journal.pone.0028897. PMid:22194943.

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. http://doi.org/10.1126/science.1258096 PMid:25430774.

Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology (N Y). 1992;10(2):176-81. http://doi.org/10.1038/nbt0292-176. PMid:1368229.

Eaton SL, Proudfoot C, Lillico SG, Skehel P, Kline RA, Hamer K, Rzechorzek NM, Clutton E, Gregson R, King T, O’Neill CA, Cooper JD, Thompson G, Whitelaw CB, Wishart TM. CRISPR/ Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep. 2019;9(1):9891. http://doi.org/10.1038/s41598-019-45859-9. PMid:31289301.

Epstein LR, Lee SS, Miller MF, Lombardi HA. CRISPR, animals, and FDA oversight: building a path to success. Proc Natl Acad Sci USA. 2021;118(22):e2004831117. http://doi.org/10.1073/pnas.2004831117. PMid:34050010.

Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, Butler JR, Sidner R, Tector M, Tector J. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/b4GalNT2 genes. Xenotransplantation. 2015;22(3):194-202. http://doi.org/10.1111/xen.12161. PMid:25728481.

Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, Faber D, Galli C, Gao Q, Hackett PB, Li N, Maga EA, Muir WM, Murray JD, Shi D, Stotish R, Sullivan E, Taylor JF, Walton M, Wheeler M, Whitelaw B, Glenn BP. Precision genetics for complex objectives in animal agriculture. J Anim Sci. 2010;88(7):2530-9. http://doi.org/10.2527/jas.2010-2847. PMid:20228236.

Flórez JM, Martins K, Solin S, Bostrom JR, Rodríguez-Villamil P, Ongaratto F, Larson SA, Ganbaatar U, Coutts AW, Kern D, Murphy TW, Kim ES, Carlson DF, Huisman A, Sonstegard TS, Lents CA. CRISPR/Cas9-editing of KISS1 to generate pigs with hypogonadotropic hypogonadism as a castration free trait. Front Genet. 2023;13:1078991. http://doi.org/10.3389/fgene.2022.1078991. PMid:36685939.

Food and Agriculture Organization - FAO. How to feed the world in 2050. Insights from an expert meet. In: Food and Agriculture Organization - FAO. Insights from an Expert Meeting at FAO. Rome, Italy: FAO; 2009. p. 1-35.

Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 2017;18(1):13. http://doi.org/10.1186/s13059-016-1144-4. PMid:28143571.

Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985;315(6021):680-3. http://doi.org/10.1038/315680a0. PMid:3892305.

Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J. A CRISPR view of development. Genes Dev. 2014;28(17):1859-72. http://doi.org/10.1101/gad.248252.114. PMid:25184674.

Henchion M, Moloney AP, Hyland J, Zimmermann J, McCarthy S. Review: trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal. 2021;15(Suppl 1):100287. http://doi.org/10.1016/j.animal.2021.100287. PMid:34312092.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-32. http://doi.org/10.1038/nbt.2647 PMid:23873081.

Karigo T, Aikawa M, Kondo C, Abe H, Kanda S, Oka Y. Whole brain-pituitary in vitro preparation of the transgenic medaka (Oryzias latipes) as a tool for analyzing the differential regulatory mechanisms of LH and FSH release. Endocrinology. 2014;155(2):536-47. http://doi.org/10.1210/en.2013-1642. PMid:24248459.

Keefer CL. Artificial cloning of domestic animals. Proc Natl Acad Sci USA. 2015;112(29):8874-8. http://doi.org/10.1073/pnas.1501718112. PMid:26195770.

Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R. Generation of myostatin gene-edited channel catfish (ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep. 2017 Aug 4;7(1):7301. http://doi.org/10.1038/s41598-017-07223-7. PMid:28779173.

Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321-34. http://doi.org/10.1038/nrg3686. PMid:24690881.

Knutson JC, Yee D. Electroporation: parameters affecting transfer of DNA into mammalian cells. Anal Biochem. 1987;164(1):44-52. http://doi.org/10.1016/0003-2697(87)90365-4. PMid:2823633.

Kozlov M. Clinical trials for pig-to-human organ transplants inch closer. Nature. 2022;607(7918):223-4. http://doi.org/10.1038/d41586-022-01861-2. PMid:35794389.

Kues WA, Niemann H. The contribution of farm animals to human health. Trends Biotechnol. 2004;22(6):286-94. http://doi.org/10.1016/j.tibtech.2004.04.003. PMid:15158058.

Li G, Zhou S, Li C, Cai B, Yu H, Ma B, Huang Y, Ding Y, Liu Y, Ding Q, He C, Zhou J, Wang Y, Zhou G, Li Y, Yan Y, Hua J, Petersen B, Jiang Y, Sonstegard T, Huang X, Chen Y, Wang X. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J. 2019;286(23):4675-92. http://doi.org/10.1111/febs.14983. PMid:31276295.

Li H, Wang G, Hao Z, Zhang G, Qing Y, Liu S, Qing L, Pan W, Chen L, Liu G, Zhao R, Jia B, Zeng L, Guo J, Zhao L, Zhao H, Lv C, Xu K, Cheng W, Li H, Zhao HY, Wang W, Wei HJ. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep. 2016;6(1):33675. http://doi.org/10.1038/srep33675. PMid:27654750.

Li M, Yang H, Zhao J, Fang L, Shi H, Li M, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics. 2014;197(2):591-9. http://doi.org/10.1534/genetics.114.163667. PMid:24709635.

Lin CC, Ezzelarab M, Hara H, Long C, Lin CW, Dorling A, Cooper DK. Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by antinonGal IgG binding to porcine aortic endothelial cells. J Thromb Haemost. 2010;8(9):2001-10. http://doi.org/10.1111/j.1538-7836.2010.03950.x. PMid:20553382.

Lin JC, Van Eenennaam AL. Electroporation-Mediated Genome Editing of Livestock Zygotes. Front Genet. 2021;12:648482. http://doi.org/10.3389/fgene.2021.648482 PMid:33927751.

Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci. 2014;281(1780):20133368. http://doi.org/10.1098/rspb.2013.3368. PMID: 2455284.

Mallapaty S, Kozlov M. First pig kidney transplant in a person: what it means for the future. Nature. 2024;628(8006):13-4. http://doi.org/10.1038/d41586-024-00879-y. PMid:38519547.

Mariano CG Jr, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod. 2024;21(1):e20230089. http://doi.org/10.1590/1984-3143-ar2023-0089. PMid:38628493.

Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 2002;417(6888):559-63. http://doi.org/10.1038/nature751. PMid:12037570.

Menchaca A, Dos Santos-Neto PC, Mulet AP, Crispo M. CRISPR in livestock: from editing to printing. Theriogenology. 2020;150:247-54. http://doi.org/10.1016/j.theriogenology.2020.01.063. PMid:32088034.

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143-8. http://doi.org/10.1038/nbt.1755. PMid:21179091.

Modzelewski AJ, Chen S, Willis BJ, Lloyd KCK, Wood JA, He L. Efficient mouse genome engineering by CRISPR-EZ technology. Nat Protoc. 2018;13(6):1253-74. http://doi.org/10.1038/nprot.2018.012. PMid:29748649.

Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Bioscience. 2022;3(1):13. http://doi.org/10.1186/s43170-022-00080-z.

Navarro-Serna S, Vilarino M, Park I, Gadea J, Ross PJ. Livestock gene editing by one-step embryo manipulation. J Equine Vet Sci. 2020;89:103025. http://doi.org/10.1016/j.jevs.2020.103025. PMid:32563448.

Nesbitt C, Galina Pantoja L, Beaton B, Chen CY, Culbertson M, Harms P, Holl J, Sosnicki A, Reddy S, Rotolo M, Rice E. Pigs lacking the SRCR5 domain of CD163 protein demonstrate heritable resistance to the PRRS virus and no changes in animal performance from birth to maturity. Front Genome Ed. 2024 Mar 13;6:1322012. http://doi.org/10.3389/fgeed.2024.1322012. PMid:38544785.

Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One. 2014;9(9):e106718. http://doi.org/10.1371/journal.pone.0106718. PMid:25188313.

Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8(9):765-70. http://doi.org/10.1038/nmeth.1670. PMid:21822273.

Peng H, Wu Y, Zhang Y. Efficient delivery of DNA and morpholinos into mouse preimplantation embryos by electroporation. PLoS One. 2012;7(8):e43748. http://doi.org/10.1371/journal.pone.0043748. PMid:22928027.

Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet. 2021;11:614688. http://doi.org/10.3389/fgene.2020.614688 PMid:33603767.

Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411-4. http://doi.org/10.1126/science.1078942. PMid:12493821.

Prather RS, Wells KD, Whitworth KM, Kerrigan MA, Samuel MS, Mileham A, Popescu LN, Rowland RRR. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV). Sci Rep. 2017;7(1):13371. http://doi.org/10.1038/s41598-017-13794-2. PMid:29042674.

Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC. Genome edited sheep and cattle. Transgenic Res. 2015;24(1):147-53. http://doi.org/10.1007/s11248-014-9832-x. PMid:25204701.

Punetha M, Kumar D, Saini S, Chaudhary S, Bajwa KK, Sharma S, Mangal M, Yadav PS, Green JA, Whitworth K, Datta TK. Optimising electroporation condition for CRISPR/Cas-Mediated knockout in zona-intact buffalo zygotes. Animals (Basel). 2024;14(1):134. http://doi.org/10.3390/ani14010134. PMid:38200865.

Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep. 2015;5(1):14435. http://doi.org/10.1038/srep14435. PMid:26400270.

Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H. Efficient CRISPR/Cas9-Mediated genome editing in mice by zygote electroporation of nuclease. Genetics. 2015;200(2):423-30. http://doi.org/10.1534/genetics.115.176594. PMid:25819794.

Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380-9. http://doi.org/10.1016/j.cell.2013.08.021. PMid:23992846.

Ratner LD, La Motta GE, Briski O, Salamone DF, Fernandez-Martin R. Practical approaches for knock-out gene editing in pigs. Front Genet. 2021;11:617850. http://doi.org/10.3389/fgene.2020.617850. PMid:33747029.

Rodríguez RR, González-Bulnes A, Garcia-Contreras C, Elena Rodriguez-Rodriguez A, Astiz S, Vazquez-Gomez M, Luis Pesantez J, Isabel B, Salido-Ruiz E, González J, Donate Correa J, Luis-Lima S, Porrini E. The Iberian pig fed with high-fat diet: a model of renal disease in obesity and metabolic syndrome. Int J Obes (Lond). 2020;44(2):457-65. http://doi.org/10.1038/s41366-019-0434-9. PMid:31636376.

Rodriguez-Villamil P, Ongaratto FL, Bostrom JR, Larson S, Sonstegard T. Generation of SLICK beef cattle by embryo microinjection: A case report. Reprod Fertil Dev. 2021;33(2):114-114. http://doi.org/10.1071/RDv33n2Ab13.

Ruan J, Xu J, Chen-Tsai RY, Li K. Genome editing in livestock: are we ready for a revolution in animal breeding industry? Transgenic Res. 2017;26(6):715-26. http://doi.org/10.1007/s11248-017-0049-7. PMid:29094286.

Sato M, Miyoshi K, Nakamura S, Ohtsuka M, Sakurai T, Watanabe S, Kawaguchi H, Tanimoto A. Efficient generation of somatic cell nuclear transfer-competent porcine cells with mutated alleles at multiple target loci by using CRISPR/Cas9 combined with targeted toxin-based selection system. Int J Mol Sci. 2017;18(12):2610. http://doi.org/10.3390/ijms18122610. PMid:29207527.

Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, Schachtschneider KM, Seixas FK, Singh K, Wells KD, Walters EM, Prather RS, Counter CM. A genetic porcine model of cancer. PLoS One. 2015;10(7):e0128864. http://doi.org/10.1371/journal.pone.0128864. PMid:26132737.

Takabayashi S, Aoshima T, Kabashima K, Aoto K, Ohtsuka M, Sato M. i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats. Sci Rep. 2018;8(1):12059. http://doi.org/10.1038/s41598-018-30137-x. PMid:30104681.

Tang H, Liu Y, Luo D, Ogawa S, Yin Y, Li S, Zhang Y, Hu W, Parhar IS, Lin H, Liu X, Cheng CH. The kiss/kissr systems are dispensable for zebrafish reproduction: evidence from gene knockout studies. Endocrinology. 2015;156(2):589-99. http://doi.org/10.1210/en.2014-1204. PMid:25406015.

Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T. Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv. 2016;2(9):e1600803. http://doi.org/10.1126/sciadv.1600803. PMid:27652340.

Wall R J. Transgenic livestock: progress and prospects for the future. Theriogenology. 1996;45(1):57-68. http://doi.org/10.1016/0093-691X(95)00355-C.

Wang K, Tang X, Liu Y, Xie Z, Zou X, Li M, Yuan H, Ouyang H, Jiao H, Pang D. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Mol Ther Nucleic Acids. 2016;5(11):e396. http://doi.org/10.1038/mtna.2016.101. PMid:27898095.

Wang S, Qu Z, Huang Q, Zhang J, Lin S, Yang Y, Meng F, Li J, Zhang K. Application of gene editing technology in resistance breeding of livestock. Life (Basel). 2022;12(7):1070. http://doi.org/10.3390/life12071070. PMid:35888158.

Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, et al. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet. 2018;49(1):43-51.

Wang Y, Du Y, Shen B, Zhou X, Li J, Liu Y, Wang J, Zhou J, Hu B, Kang N, Gao J, Yu L, Huang X, Wei H. Efficient generation of gene modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep. 2015;5(1):8256. http://doi.org/10.1038/srep08256. PMid:25653176.

Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep. 2016;6(1):21284. http://doi.org/10.1038/srep21284. PMid:26888627.

Wei J, Gaynor P, Cole S, Brophy B, Oback B, Laible G. Developing the laboratory conditions for bovine zygote-mediated genome editing by electroporation. In: Proceedings of the World Congress on Genetics Applied to Livestock Production; 2018; New Zealand. New Zeland: World Congress on Genetics Applied to Livestock Production; 2018, p. 111118.

Whitworth K, Lee K, Benne J, Beaton B, Spate L, Murphy S, Samuel MS, Mao J, O'Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro derived oocytes and embryos. Biol Reprod. 2014;91(3):78. http://doi.org/10.1095/biolreprod.114.121723. PMid: 25100712.

Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810-3. http://doi.org/10.1038/385810a0. [:200. PMID: 9039911] PMid:9039911.

Workman AM, Heaton MP, Vander Ley BL, Webster DA, Sherry L, Bostrom JR, Larson S, Kalbfleisch TS, Harhay GP, Jobman EE, Carlson DF, Sonstegard TS. First gene-edited calf with reduced susceptibility to a major viral pathogen. PNAS Nexus. 2023 May 9;2(5):pgad125. http://doi.org/10.1093/pnasnexus/pgad125. PMid: 37181049.

Wu J, Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC. Stem cells and interspecies chimaeras. Nature. 2016;540(7631):51-9. http://doi.org/10.1038/nature20573. PMid:27905428.

Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, Cao C, Hambly C, Qin G, Yao J, Song R, Jia Q, Wang X, Li Y, Zhang N, Piao Z, Ye R, Speakman JR, Wang H, Zhou Q, Wang Y, Jin W, Zhao J. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA. 2017;114(45):E9474-82. http://doi.org/10.1073/pnas.1707853114. PMid:29078316.

Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep. 2016;6(1):22953. http://doi.org/10.1038/srep22953. PMid:26976234.

Zhu XX, Pan JS, Lin T, Yang YC, Huang QY, Yang SP, Qu ZX, Lin ZS, Wen JC, Yan AF, Feng J, Liu L, Zhang XL, Lu JH, Tang DS. Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells. Biotechnol Lett. 2022;44(1):59-76. http://doi.org/10.1007/s10529-021-03214-x. PMid:34997407.
 


Submitted date:
04/29/2024

Accepted date:
08/05/2024

66ed70cea9539514c43447f3 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections