Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0065
Animal Reproduction (AR)
Thematic Section: X International Symposium on Animal Biology of Reproduction (ISABR)

Extracellular vesicles: emerging paradigms in bovine embryo-maternal communication

Rosane Mazzarella; Yulia Nathaly Cajas; Maria Encina Gonzalez Martínez; Dimitrios Rizos

Downloads: 1
Views: 155

Abstract

The oviduct and uterus provide an optimal environment for early embryo development, where effective communication between the embryo and the maternal reproductive tract is crucial for establishing and maintaining pregnancy. Oviductal and uterine-derived EVs play pivotal roles in this maternal-embryonic communication and in facilitating early embryo development. However, despite the ability of in vitro culture methods to produce viable embryos, the lack of exchange between the embryo and the mother often results in lower-quality embryos than those derived in vivo. Therefore, there is a pressing need to increase our understanding of the physiological mechanisms underlying embryo interaction with the oviduct and endometrium through EVs and to develop models capable of mimicking the in vivo environment. This review aims to provide up-to-date insights into the communication between the mother and pre-implantation bovine embryo, exploring their applications and perspectives in the field.

Keywords

pre-implantational embryo development, reproductive fluids, extracellular vesicles, reproductive technologies

References

Aguilera C, Velásquez AE, Gutierrez-Reinoso MA, Wong YS, Melo-Baez B, Cabezas J, Caamaño D, Navarrete F, Rojas D, Riadi G, Castro FO, Rodriguez-Alvarez L. Extracellular vesicles secreted by pre-hatching bovine embryos produced in vitro and in vivo alter the expression of IFNtau-Stimulated Genes in Bovine endometrial cells. Int J Mol Sci. 2023;24(8):7438. http://doi.org/10.3390/ijms24087438. PMid:37108601.

Aguilera C, Wong YS, Gutierrez-Reinoso MA, Velásquez AE, Melo-Báez B, Cabezas J, Caamaño D, Navarrete F, Castro FO, Rodriguez-Alvarez LL. Embryo-maternal communication mediated by extracellular vesicles in the early stages of embryonic development is modified by in vitro conditions. Theriogenology. 2024;214:43-56. http://doi.org/10.1016/j.theriogenology.2023.10.005. PMid:37852113.

Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction. 2017;154(3):153-68. http://doi.org/10.1530/REP-17-0054. PMid:28630101.

Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19(1):622. http://doi.org/10.1186/s12864-018-4982-5. PMid:30134841.

Barceló‐Fimbres M, Seidel GE Jr. Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Mol Reprod Dev. 2007;74(11):1395-405. http://doi.org/10.1002/mrd.20699. PMid:17342731.

Bastos NM, Ferst JG, Goulart RS, da Silveira JC. The role of the oviduct and extracellular vesicles during early embryo development in bovine. Anim Reprod. 2022;19(1):e20220015. http://doi.org/10.1590/1984-3143-ar2022-0015. PMid:35493787.

Bauersachs S, Mermillod P, Almiñana C. The oviductal extracellular vesicles’ RNA cargo regulates the bovine embryonic transcriptome. Int J Mol Sci. 2020;21(4):1303. http://doi.org/10.3390/ijms21041303. PMid:32075098.

Bazer FW, Wu G, Johnson GA, Kim J, Song G. Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod. 2011;85(6):1094-107. http://doi.org/10.1095/biolreprod.111.094722. PMid:21865556.

Binelli M, Gonella-Diaza A, Mesquita F, Membrive C. Sex steroid-mediated control of oviductal function in cattle. Biology (Basel). 2018;7(1):15. http://doi.org/10.3390/biology7010015. PMid:29393864.

Bridi A, Andrade GM, Del Collado M, Sangalli JR, de Ávila ACFCM, Motta IG, da Silva JCB, Pugliesi G, Silva LA, Meirelles FV, da Silveira JC, Perecin F. Small extracellular vesicles derived from in vivo- or in vitro-produced bovine blastocysts have different miRNAs profiles-Implications for embryo-maternal recognition. Mol Reprod Dev. 2021;88(9):628-43. http://doi.org/10.1002/mrd.23527. PMid:34402123.

Caamaño D, Cabezas J, Aguilera C, Martinez I, Sen Wong Y, Sagredo DS, Ibañez B, Rodriguez S, Castro FO, Rodriguez-Alvarez L. DNA content in embryonic extracellular vesicles is independent of the apoptotic rate in bovine embryos produced in vitro. Animals (Basel). 2024;14(7):1041. http://doi.org/10.3390/ani14071041. PMid:38612280.

Cajas YN, Canõn-Beltrán K, De La Blanca MGM, Sánchez JM, Fernandez-Fuertes B, González EM, Rizos D. Role of reproductive fluids and extracellular vesicles in embryo-maternal interaction during early pregnancy in cattle. Reprod Fertil Dev. 2021;34(2):117-38. http://doi.org/10.1071/RD21275. PMid:35231231.

Cañón-Beltrán K, Cajas YN, Almpanis V, Egido SG, Gutierrez-Adan A, González EM, Rizos D. MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway. Biol Res. 2024;57(1):11. http://doi.org/10.1186/s40659-024-00488-z. PMid:38520036.

Cañón-Beltrán K, Cajas YN, Mazzarella R, Gascón D, Nuñez-Puente C, Millán de la Blanca MG, Martinez CA, Gutiérrez-Adán A, González E, Rizos D. bta-miR-133b secreted by extracellular vesicles from the oviduct of pregnant cows could modulate signalling pathways during early embryo development. Anim. -. Sci. Proc. 2023;14(3):468. http://doi.org/10.1016/j.anscip.2023.03.061.

De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium on-a-chip reveals insulin- and glucose-induced alterations in the transcriptome and proteomic secretome. Endocrinology. 2021;162(6):bqab054. http://doi.org/10.1210/endocr/bqab054. PMid:33693651.

Dissanayake K, Nõmm M, Lättekivi F, Ord J, Ressaissi Y, Godakumara K, Reshi QUA, Viil J, Jääger K, Velthut-Meikas A, Salumets A, Jaakma Ü, & Fazeli A. Oviduct as a sensor of embryo quality: deciphering the extracellular vesicle (EV)-mediated embryo-maternal dialogue. Journal of Molecular Medicine. 2021; 99(5), 685–697. PMid:33512581.

Dissanayake K, Nõmm M, Lättekivi F, Ressaissi Y, Godakumara K, Lavrits A, Midekessa G, Viil J, Bæk R, Jørgensen MM, Bhattacharjee S, Andronowska A, Salumets A, Jaakma Ü, Fazeli A. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology. 2020;149:104-16. http://doi.org/10.1016/j.theriogenology.2020.03.008. PMid:32259747.

Ferraz MAMM, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Hölker M, Besenfelder U, Mokry M, Vos PLAM, Stout TAE, Le Gac S, Gadella BM. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun. 2018;9(1):4934. http://doi.org/10.1038/s41467-018-07119-8. PMid:30467383.

Frankenberg SR, de Barros FRO, Rossant J, Renfree MB. The mammalian blastocyst. WIREs. Dev Biol. 2016;5(2):210-32. PMid:27565022.

Gatien J, Mermillod P, Tsikis G, Bernardi O, Janati Idrissi S, Uzbekov R, Le Bourhis D, Salvetti P, Almiñana C, Saint-Dizier M. Metabolomic Profile of Oviductal Extracellular Vesicles across the Estrous Cycle in Cattle. Int. J. Mol. Sci. 2019;20(24):6339. PMid: 31888194.

Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci. 2014;149(1–2):46-58. http://doi.org/10.1016/j.anireprosci.2014.05.016. PMid:24975847.

György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667-88. http://doi.org/10.1007/s00018-011-0689-3. PMid:21560073.

Hamdi M, Cañon-Beltrán K, Mazzarella R, Cajas YN, Leal CLV, Gutierrez-Adan A, González EM, Da Silveira JC, Rizos D. Characterization and profiling analysis of bovine oviduct and uterine extracellular vesicles and their miRNA cargo through the estrous cycle. FASEB J. 2021;35(12):e22000. http://doi.org/10.1096/fj.202101023R. PMid:34731497.

Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ. Reassessment of Exosome Composition. Cell. 2019;177(2):428-445.e18. http://doi.org/10.1016/j.cell.2019.02.029. PMid:30951670.

Khurana NK, Niemann H. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo1. Biol Reprod. 2000;62(4):847-56. http://doi.org/10.1095/biolreprod62.4.847. PMid:10727252.

Kusama K, Nakamura K, Bai R, Nagaoka K, Sakurai T, Imakawa K. Intrauterine exosomes are required for bovine conceptus implantation. Biochem Biophys Res Commun. 2018;495(1):1370-5. http://doi.org/10.1016/j.bbrc.2017.11.176. PMid:29196267.

Kusama K, Rashid MB, Kowsar R, Marey MA, Talukder AK, Nagaoka K, Shimada M, Khatib H, Imakawa K, Miyamoto A. Day 7 embryos change the proteomics and exosomal Micro-RNAs content of bovine uterine fluid: involvement of innate immune functions. Front Genet. 2021;12:676791. http://doi.org/10.3389/fgene.2021.676791. PMid:34262596.

Lawson EF, Ghosh A, Blanch V, Grupen CG, Aitken RJ, Lim R, Drury HR, Baker MA, Gibb Z, Tanwar PS. Establishment and characterization of oviductal organoids from farm and companion animals. Biol Reprod. 2023;108(6):854-65. http://doi.org/10.1093/biolre/ioad030. PMid:36917225.

Leal CLV, Cañón-Beltrán K, Cajas YN, Hamdi M, Yaryes A, Millán de la Blanca MG, Beltrán-Breña P, Mazzarella R, da Silveira JC, Gutiérrez-Adán A, González EM, Rizos D. Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. J Anim Sci Biotechnol. 2022;13(1):116. http://doi.org/10.1186/s40104-022-00763-7. PMid:36280872.

Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://doi.org/10.1530/JOE-16-0302. PMid:27875265.

Lonergan P, Forde N. Maternal-embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal. 2014;8(Suppl 1):64-9. http://doi.org/10.1017/S1751731114000470. PMid:24679216.

Lonergan P, Rizos D, Gutierrez‐Adan A, Fair T, Boland M. Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod Domest Anim. 2003;38(4):259-67. http://doi.org/10.1046/j.1439-0531.2003.00437.x. PMid:12887565.

Lopera-Vásquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltrán-Breña P, Calle A, Redruello A, López-Martín S, Gutierrez-Adán A, Yañez-Mó M, Ramirez MÁ, Rizos D. Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One. 2016;11(2):e0148083. http://doi.org/10.1371/journal.pone.0148083. PMid:26845570.

Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Angel Ramirez M, et al. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction. 2017;153(4):461-70. http://doi.org/10.1530/REP-16-0384. PMid:28104825.

Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, da Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://doi.org/10.3389/fvets.2021.639752. PMid:33748215.

Mazzarella R, Cajas YN, Cañón-Beltrán K, Gascón Collado D, Beltrán–Breña P, Sánchez JM, Fernandez-Fuertes B, Gutierrez-Adan A, González E, Rizos D. Effect of bta-miR-483-3p of extracellular vesicles from the oviductal fluid of pregnant cows on in vitro early embryo development. Anim. -. Sci. Proc. 2023a;14(3):467-8. http://doi.org/10.1016/j.anscip.2023.03.060.

Mazzarella R, Cajas YN, Cañón-Beltrán K, Gascón D, Martinez CA, Millán de la Blanca MG, Beltrán-Breña P, Nuñez-Puente C, González E, Rizos D. Impact of bta-mir-483-3p carried within oviductal fluid’s extracellular vesicles of pregnant cows on in vitro embryo development and quality. Reprod Fertil Dev. 2023b;36(2):196-196. http://doi.org/10.1071/RDv36n2Ab89.

Mazzarella R, Cañón-Beltrán K, Cajas YN, Hamdi M, González EM, da Silveira JC, Leal CLV, Rizos D. Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development. J Anim Sci Biotechnol. 2024;15(1):51. http://doi.org/10.1186/s40104-024-01008-5. PMid:38570884.

Mazzarella R, Sánchez JM, Egido SG, Álvarez-Barrientos A, González E, Falcón-Pérez JM, Azkargorta M, Elortza F, González ME, Lonergan P, Rizos D, Fernandez-Fuertes B. Profiling the protein cargo of uterine extracellular vesicles isolated from pregnant and cyclic heifers. Anim Reprod. 2023c;20(2):1-3.

Mazzarella R, Sánchez JM, Fernandez-Fuertes B, Egido SG, Álvarez-Barrientos A, González E, Falcon-Perez JM, Azkargorta M, Elortza F, González EM. Embryo-induced alterations in the protein profile of bovine oviductal extracellular vesicles. Anim Reprod. 2023d;20(2):1-2.

Mazzarella R, Sánchez JM, Fernández-Fuertes B, Egido SG, Álvarez-Barrientos A, Jiménez EG, Falcón-Pérez JM, Azkargorta M, Elortza F, González Martinez ME, Lonergan P, Rizos D. Deciphering the dialogue between the early bovine embryo and the oviduct: comparison of extracellular vesicle proteins from an ex vivo model and an in vivo environment. Reprod Fertil Dev. 2023e;36(2):184-5. http://doi.org/10.1071/RDv36n2Ab67.

Mellisho EA, Velásquez AE, Nuñez MJ, Cabezas JG, Cueto JA, Fader C, Castro FO, Rodríguez-Álvarez L. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS One. 2017;12(5):e0178306. http://doi.org/10.1371/journal.pone.0178306. PMid:28542562.

O’Neil EV, Burns GW, Spencer TE. Extracellular vesicles: novel regulators of conceptus-uterine interactions? Theriogenology. Elsevier Ltd. 2020;150:106-12. http://doi.org/10.1016/j.theriogenology.2020.01.083. PMid:32164992.

Pavani KC, Hendrix A, Van Den Broeck W, Couck L, Szymanska K, Lin X, De Koster J, Van Soom A, Leemans B. Isolation and characterization of functionally active extracellular vesicles from culture medium conditioned by bovine embryos in vitro. Int J Mol Sci. 2019;20(1):1–22. PMid: 30577682.

Passaro C, Tutt D, Mathew DJ, Sanchez JM, Browne JA, Boe-Hansen GB, Fair T, Lonergan P. Blastocyst-induced changes in the bovine endometrial transcriptome. Reproduction. 2018;156(3):219-29. http://doi.org/10.1530/REP-18-0188. PMid:30021913.

Piibor J, Dissanayake K, Midekessa G, Andronowska A, Kavak A, Waldmann A, Fazeli A. Characterization of bovine uterine fluid extracellular vesicles proteomic profiles at follicular and luteal phases of the oestrous cycle. Vet Res Commun. 2023;47(2):885-900. http://doi.org/10.1007/s11259-022-10052-3. PMid:36547796.

Pontes JHF, Nonato-Junior I, Sanches BV, Ereno-Junior JC, Uvo S, Barreiros TRR, Oliveira JA, Hasler JF, Seneda MM. Comparison of embryo yield and pregnancy rate between in vivo and in vitro methods in the same Nelore (Bos indicus) donor cows. Theriogenology. 2009;71(4):690-7. http://doi.org/10.1016/j.theriogenology.2008.09.031. PMid:18995895.

Qiao F, Ge H, Ma X, Zhang Y, Zuo Z, Wang M, Zhang Y, Wang Y. Bovine uterus-derived exosomes improve developmental competence of somatic cell nuclear transfer embryos. Theriogenology. 2018;114:199-205. http://doi.org/10.1016/j.theriogenology.2018.03.027. PMid:29653387.

Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, Ge H, Liu J, Zhang Y, Cui W, Wang Y. Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS One. 2017;12(3):e0174535. http://doi.org/10.1371/journal.pone.0174535. PMid:28350875.

Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-83. http://doi.org/10.1083/jcb.201211138. PMid:23420871.

Rizos D, Clemente M, Bermejo‐Alvarez P, De La Fuente J, Lonergan P, Gutiérrez‐Adán A. Consequences of In Vitro Culture Conditions on Embryo Development and Quality. Reprod Domest Anim. 2008;43(s4, Suppl 4):44-50. http://doi.org/10.1111/j.1439-0531.2008.01230.x. PMid:18803756.

Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P. Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev. 2002a;62(3):320-7. http://doi.org/10.1002/mrd.10138. PMid:12112595.

Rizos D, Lonergan P, Boland MP, Arroyo-García R, Pintado B, De la Fuente J, Gutiérrez-Adán A. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod. 2002b;66(3):589-95. http://doi.org/10.1095/biolreprod66.3.589. PMid:11870062.

Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002c;61(2):234-48. http://doi.org/10.1002/mrd.1153. PMid:11803560.

Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8(19):4083-99. http://doi.org/10.1002/pmic.200800109. PMid:18780348.

Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev. 2017;29(1):84-100. http://doi.org/10.1071/RD16359. PMid:28278796.

Sponchiado M, Marei WFA, Beemster GTS, Bols PEJ, Binelli M, Leroy JLMR. Molecular interactions at the bovine embryo–endometrial epithelium interface. Reproduction. 2020;160(6):887-903. http://doi.org/10.1530/REP-20-0344. PMid:33112768.

Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89(2):205-12. http://doi.org/10.1016/j.biochi.2006.10.014. PMid:17157973.

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. http://doi.org/10.1080/20013078.2018.1535750. PMid:30637094.

Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569-79. http://doi.org/10.1038/nri855. PMid:12154376.

Thompson RE, Bouma GJ, Hollinshead FK. The roles of extracellular vesicles and organoid models in female reproductive physiology. Int J Mol Sci. 2022;23(6):3186. http://doi.org/10.3390/ijms23063186. PMid:35328607.

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. http://doi.org/10.1038/ncb1596. PMid:17486113.

Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31-9. http://doi.org/10.1016/j.blre.2012.12.002. PMid:23261067.
 


Submitted date:
05/17/2024

Accepted date:
06/25/2024

66c73eb1a9539509e852f172 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections