Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0080
Animal Reproduction (AR)
SHORT COMMUNICATION

Absence of mating behaviors in the female dogs neonatally treated with estrogen and progesterone

ChanJin Park; Kayla Tando; Sandra Soto-Heras; Sherry Zhou; Po-Ching Lin; CheMyong Ko

Downloads: 0
Views: 16

Abstract

This study aimed to develop a non-surgical method to neutralize reproduction in female dogs. Female Beagle puppies, aged 6 days, were treated with pellets designed to release estradiol benzoate (EB; 1.0 mg) and progesterone (P4; 5.0 mg) over approximately 3 weeks. Their estrous cycles were monitored from 6 to 34 months of age by examining their vulvas daily and measuring their serum P4 levels once a month. Vulvar edema and discharge, followed by a serum P4 level above 5 ng/ml, indicated the potential estrus. Each time a dog showed these signs, breeding was attempted by housing with a proven male Beagle. All the treated dogs displayed cyclic progesterone surges with 5 to 6-month-long anestrous intervals. Surprisingly, none exhibited sexual behaviors, and no mating occurred (i.e., no intromission and copulatory tie), resulting in no pups being born. This phenomenon was further explored in laboratory animals. Neonatal female rats were treated with microspheres containing smaller doses of the same steroids (0.3 mg EB + 3.0 mg P4) at 1 or 2 days old. At 3 months old, the rats were ovariectomized, chemically stimulated to exhibit estrus behaviors using a standard protocol and tested for receptivity to proven male rats. Untreated control rats showed normal receptivity (i.e., lordosis) and allowed males to mate. However, rats treated with EB+P4 did not exhibit lordosis or allow mating. These results indicate that the combined use of estrogen and progesterone could be an effective non-surgical method for inhibiting mating behavior and, consequently, neutralizing female dog reproduction.

Keywords

dog, estrogen, progesterone, neonatal, sexual behavior

References

Anderson WA, Desombre ER, Kang YH. Estrogen-progesterone antagonism with respect to specific marker protein synthesis and growth by the uterine endometrium. Biol Reprod. 1977;16(3):409-19. http://doi.org/10.1095/biolreprod16.3.409. PMid:843566.

Asa CS. Contraception in dogs and cats. Vet Clin North Am Small Anim Pract. 2018;48(4):733-42. http://doi.org/10.1016/j.cvsm.2018.02.014. PMid:29685519.

Bakker J, Baum MJ. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol. 2008;29(1):1-16. http://doi.org/10.1016/j.yfrne.2007.06.001. PMid:17720235.

Bonthuis PJ, Patteson JK, Rissman EF. Acquisition of sexual receptivity: roles of chromatin acetylation, estrogen receptor-alpha, and ovarian hormones. Endocrinology. 2011;152(8):3172-81. http://doi.org/10.1210/en.2010-1001. PMid:21652725.

Candolfi M, Jaita G, Zaldivar V, Zarate S, Ferrari L, Pisera D, Castro MG, Seilicovich A. Progesterone antagonizes the permissive action of estradiol on tumor necrosis factor-alpha-induced apoptosis of anterior pituitary cells. Endocrinology. 2005;146(2):736-43. http://doi.org/10.1210/en.2004-1276. PMid:15528300.

d’Anglemont de Tassigny X, Fagg LA, Dixon JP, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MB, Aparicio SA, Colledge WH. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA. 2007;104(25):10714-9. http://doi.org/10.1073/pnas.0704114104. PMid:17563351.

Davis EC, Popper P, Gorski RA. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res. 1996;734(1-2):10-8. http://doi.org/10.1016/0006-8993(96)00298-3. PMid:8896803.

Edwards DA, Pfeifle JK. Hormonal control of receptivity, proceptivity and sexual motivation. Physiol Behav. 1983;30(3):437-43. http://doi.org/10.1016/0031-9384(83)90150-6. PMid:6683412.

Foidart JM, Colin C, Denoo X, Desreux J, Beliard A, Fournier S, de Lignieres B. Estradiol and progesterone regulate the proliferation of human breast epithelial cells. Fertil Steril. 1998;69(5):963-9. http://doi.org/10.1016/S0015-0282(98)00042-9. PMid:9591509.

Gonzales KL, Quadros-Mennella P, Tetel MJ, Wagner CK. Anatomically-specific actions of oestrogen receptor in the developing female rat brain: effects of oestradiol and selective oestrogen receptor modulators on progestin receptor expression. J Neuroendocrinol. 2012;24(2):285-91. http://doi.org/10.1111/j.1365-2826.2011.02232.x. PMid:21981076.

Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol. 2018;238(3):R173-83. http://doi.org/10.1530/JOE-18-0108. PMid:30042117.

Henley CL, Nunez AA, Clemens LG. Estrogen treatment during development alters adult partner preference and reproductive behavior in female laboratory rats. Horm Behav. 2009;55(1):68-75. http://doi.org/10.1016/j.yhbeh.2008.08.009. PMid:18793640.

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. http://doi.org/10.1371/journal.pbio.1000412. PMid:20613859.

Ladd A, Tsong YY, Walfield AM, Thau R. Development of an antifertility vaccine for pets based on active immunization against luteinizing hormone-releasing hormone. Biol Reprod. 1994;51(6):1076-83. http://doi.org/10.1095/biolreprod51.6.1076. PMid:7888486.

Maier WE, Herman JR. Pharmacology and toxicology of ethinyl estradiol and norethindrone acetate in experimental animals. Regul Toxicol Pharmacol. 2001;34(1):53-61. http://doi.org/10.1006/rtph.2001.1483. PMid:11502156.

Mauvais-Jarvis P, Kuttenn F, Gompel A. Antiestrogen action of progesterone in breast tissue. Breast Cancer Res Treat. 1986;8(3):179-88. http://doi.org/10.1007/BF01807330. PMid:3297211.

McCarthy MM. A new view of sexual differentiation of mammalian brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020;206(3):369-78. http://doi.org/10.1007/s00359-019-01376-8. PMid:31705197.

McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91-124. http://doi.org/10.1152/physrev.00010.2007. PMid:18195084.

McCarthy MM. The two faces of estradiol: effects on the developing brain. Neuroscientist. 2009;15(6):599-610. http://doi.org/10.1177/1073858409340924. PMid:19700741.

Minabe S, Ieda N, Watanabe Y, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Long-term neonatal estrogen exposure causes irreversible inhibition of LH pulses by suppressing arcuate kisspeptin expression via estrogen receptors alpha and beta in female rodents. Endocrinology. 2017;158(9):2918-29. http://doi.org/10.1210/en.2016-1144. PMid:28368450.

Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31. http://doi.org/10.4103/0976-0105.177703. PMid:27057123.

Novaira HJ, Sonko ML, Hoffman G, Koo Y, Ko C, Wolfe A, Radovick S. Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism. Mol Endocrinol. 2014;28(2):225-38. http://doi.org/10.1210/me.2013-1319. PMid:24422632.

Park CJ, Minabe S, Hess RA, Lin PP, Zhou S, Bashir ST, Barakat R, Gal A, Ko CJ. Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Sci Rep. 2023;13(1):9627. http://doi.org/10.1038/s41598-023-36727-8. PMid:37316510.

Quadros PS, Goldstein AY, De Vries GJ, Wagner CK. Regulation of sex differences in progesterone receptor expression in the medial preoptic nucleus of postnatal rats. J Neuroendocrinol. 2002a;14(10):761-7. http://doi.org/10.1046/j.1365-2826.2002.00827.x. PMid:12372000.

Quadros PS, Lopez V, De Vries GJ, Chung WC, Wagner CK. Progesterone receptors and the sexual differentiation of the medial preoptic nucleus. J Neurobiol. 2002b;51(1):24-32. http://doi.org/10.1002/neu.10040. PMid:11920725.

Quadros PS, Pfau JL, Goldstein AY, De Vries GJ, Wagner CK. Sex differences in progesterone receptor expression: a potential mechanism for estradiol-mediated sexual differentiation. Endocrinology. 2002c;143(10):3727-39. http://doi.org/10.1210/en.2002-211438. PMid:12239082.

Shiorta M, Kawashima J, Nakamura T, Ogawa Y, Kamiie J, Yasuno K, Shirota K, Yoshida M. Delayed effects of single neonatal subcutaneous exposure of low-dose 17alpha-ethynylestradiol on reproductive function in female rats. J Toxicol Sci. 2012;37(4):681-90. http://doi.org/10.2131/jts.37.681. PMid:22863849.

Shirota M, Kawashima J, Nakamura T, Kamiie J, Shirota K, Yoshida M. Dose-dependent acceleration in the delayed effects of neonatal oral exposure to low-dose 17alpha-ethynylestradiol on reproductive functions in female Sprague-Dawley rats. J Toxicol Sci. 2015;40(6):727-38. http://doi.org/10.2131/jts.40.727. PMid:26558453.

Smith JT, Roseweir A, Millar M, Clarke IJ, Millar RP. Stimulation of growth hormone by kisspeptin antagonists in ewes. J Endocrinol. 2018;237(2):165-73. http://doi.org/10.1530/JOE-18-0074. PMid:29549187.

Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev. 2018;64(6):469-76. http://doi.org/10.1262/jrd.2018-110. PMid:30298825.

Whalen RE, Nadler RD. Modification of spontaneous and hormone-induced sexual behavior by estrogen administered to neonatal female rats. J Comp Physiol Psychol. 1965;60(1):150-2. http://doi.org/10.1037/h0022300. PMid:14334236.
 


Submitted date:
06/06/2024

Accepted date:
11/19/2024

6788064ea95395750a1c9a95 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections