Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0006
Animal Reproduction (AR)
ORIGINAL ARTICLE

Prokaryotic expression, polyclonal antibody production, and application of yak TGF-β2

Yaming Chen; Yangyang Pan; Sijiu Yu; Jinglei Wang; Jiangfeng Fan

Downloads: 0
Views: 46

Abstract

This study aimed to generate yak-specific polyclonal antibodies against transforming growth factor beta 2 (TGF-β2). Specific primers targeting the TGF-β2 coding sequence (CDS) were designed, and the gene was amplified via RT-PCR. The amplified product was cloned into the pET-32a(+) vector to construct the recombinant plasmid pET-32a(+)-TGF-β2. This plasmid was transformed into Escherichia coli BL21(DE3) for protein expression. Isopropyl β-D-1-thiogalactopyranoside (IPTG) induced TGF-β2 production, and the recombinant protein was purified. New Zealand rabbits were immunized with the purified protein to generate polyclonal antibodies. Polyclonal antibody titers were determined using ELISA, while specificity was assessed through Western blot and immunohistochemistry. The recombinant plasmid was successfully constructed, and IPTG induction yielded a 63 kDa protein. Optimal expression occurred at 25 °C with 0.5 mmol·L−1 IPTG and a 10-hour induction period. ELISA confirmed an antibody titer of 1:106. Western blot and immunohistochemistry demonstrated TGF-β2 expression in female yak ovaries, oviducts, and uteri across reproductive stages, with significantly elevated ovarian levels during pregnancy. This study successfully produced and validated a highly specific anti-yak TGF-β2 polyclonal antibody, providing a vital tool for investigating its role in yak reproductive physiology.

Keywords

yak, TGF-β2, prokaryotic expression, polyclonal antibody

References

Azumah R, Liu M, Hummitzsch K, Bastian NA, Hartanti MD, Irving-Rodgers HF, Anderson RA, Rodgers RJ. Candidate genes for polycystic ovary syndrome are regulated by TGFβ in the bovine foetal ovary. Hum Reprod. 2022;37(6):1244-54. http://doi.org/10.1093/humrep/deac049. PMid:35413103.

Cao Y, Fan J, Yu S, Zhou Y, Du P, Li Y, Ma J, Zhao S. Prokaryotic expression of yaks EPF and its preparation of polyclonal antibodies. Acta Vet Zootech Sin. 2022;53:470-80. http://doi.org/10.11843/j.issn.0366-6964.2022.02.014.

Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S. Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping. Proc Natl Acad Sci USA. 2024;121(52):e2408083121. http://doi.org/10.1073/pnas.2408083121. PMid:39705308.

Du F, Liu Y-Q, Xu Y-S, Li Z-J, Wang Y-Z, Zhang Z-X, Sun X-M. Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microb Cell Fact. 2021;20(1):189. http://doi.org/10.1186/s12934-021-01680-6. PMid:34565359.

Ergin K, Gürsoy E, Başimoğlu Koca Y, Başaloğlu H, Seyrek K. Immunohistochemical detection of insulin-like growth factor-I, transforming growth factor-beta2, basic fibroblast growth factor and epidermal growth factor-receptor expression in developing rat ovary. Cytokine. 2008;43(2):209-14. http://doi.org/10.1016/j.cyto.2008.05.013. PMid:18586513.

Gu Y, Guo X, Liu P, Li G, Huang C, Guo F, Hu G, Wu C, Xu Z, Yang X, Liu P. Preparation of ribosomal protein S14 polyclonal antibody in broiler pulmonary artery: its application in broiler ascites syndrome. Int J Biol Macromol. 2021;193(Pt A):328-36. http://doi.org/10.1016/j.ijbiomac.2021.10.130. PMid:34699893.

Guo R, Liu J, Wu D, Xu Q, Chu Y. Preparation of the rabbit-anti-human TGF-β1 polyclonal antibody. Med Recapitulate. 2011;17:2509-10.

Huai B, Huang C, Hu L. Curcumin suppresses TGF-β2-induced proliferation, migration, and invasion in lens epithelial cells by targeting KCNQ1OT1/miR-377-3p/COL1A2 axis in posterior capsule opacification. Curr Eye Res. 2022;47(5):715-26. http://doi.org/10.1080/02713683.2021.2021537. PMid:35179079.

Huang W, Zhang S. Study on the correlation between the levels of HtrA3 and TGF-β2 in late pregnancy and preeclampsia. J Healthc Eng. 2022;2022:4453646. http://doi.org/10.1155/2022/4453646. PMid:35035835.

Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis C, Heldin C-H. Emergence, development, and diversification of the TGF-beta signalling pathway within the animal kingdom. BMC Evol Biol. 2009;9(1):28. http://doi.org/10.1186/1471-2148-9-28. PMid:19192293.

Islam MS. Advances in uterine fibroid research: linking progesterone and the transforming growth factor-β signaling pathway. Fertil Steril. 2024;122(2):272-3. http://doi.org/10.1016/j.fertnstert.2024.05.004. PMid:38729338.

Jiao Z, Pan Y, Wang M, Wang J, Ma W, Gao X, Zhang H, Cui Y, Yu S, Wang L. Preparation of polyclonal antibody against yak LC3B protein and its application in detection of expression in reproductive organs. Acta Vet Zootech Sin. 2023;54:2436-47. http://doi.org/10.11843/j.issn.0366-6964.2023.06.022.

Jovanović A, Kramer B. The effect of hyperstimulation on transforming growth factor beta(1) and beta(2) in the rat uterus: possible consequences for embryo implantation. Fertil Steril. 2010;93(5):1509-17. http://doi.org/10.1016/j.fertnstert.2008.12.092. PMid:19200954.

Knight PG, Glister C. TGF-β superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191-206. http://doi.org/10.1530/rep.1.01074. PMid:16885529.

Kondo T, Yumura S. Strategies for enhancing gene expression in Escherichia coli. Appl Microbiol Biotechnol. 2020;104(9):3825-34. http://doi.org/10.1007/s00253-020-10430-4. PMid:32125482.

Li J, Ge L, Zhao Y, Zhai Y, Rao N, Yuan X, Yang J, Jing L, Yu S. TGF-β2 and TGF-β1 differentially regulate the odontogenic and osteogenic differentiation of mesenchymal stem cells. Arch Oral Biol. 2022;135:105357. http://doi.org/10.1016/j.archoralbio.2022.105357. PMid:35085927.

Liu J, Qi N, Xing W, Li M, Qian Y, Luo G, Yu S. The TGF-β/SMAD signaling pathway prevents follicular atresia by upregulating MORC2. Int J Mol Sci. 2022;23(18):10657. http://doi.org/10.3390/ijms231810657. PMid:36142569.

Long J. Bioinformatic analysis of TGF-β signaling pathway members and their expression in Nile tilapia [dissertation]. El Paso: Southwest University; 2019.

Monsivais D, Matzuk MM, Pangas SA. The TGF-β family in the reproductive tract. Cold Spring Harb Perspect Biol. 2017;9(10):a022251. http://doi.org/10.1101/cshperspect.a022251. PMid:28193725.

Noyola-Martínez N, Chirinos M, Ramírez-Camacho I, Escamilla-Bucio JE, García-Olivares M, Aragón-Hernández JP, Segovia-Mendoza M, Halhali A, Barrera D. Effects of calcitriol upon TGF-βs and their receptors in trophoblast cells. J Reprod Immunol. 2024;161:104181. http://doi.org/10.1016/j.jri.2023.104181. PMid:38141515.

Rybska M, Woźna-Wysocka M, Wąsowska B, Skrzypski M, Kubiak M, Błaszak B, Łukomska A, Nowak T, Jaśkowski JM. Expression of transforming growth factor beta isoforms in canine endometrium with cystic endometrial hyperplasia–pyometra complex. Animals (Basel). 2021;11(6):1844. http://doi.org/10.3390/ani11061844. PMid:34205820.

Soman M, Mini M, Joseph S, Thomas J, Chacko N, Sumithra TG, Ambily R, Mani BK, Balan R. Cloning and sequence analysis of a partial CDS of leptospiral ligA gene in pET-32a - Escherichia coli DH5α system. Vet World. 2018;11(4):557-61. http://doi.org/10.14202/vetworld.2018.557-561. PMid:29805225.

Sundaresan NR, Saxena VK, Sastry KVH, Nagarajan K, Jain P, Singh R, Anish D, Ravindra PV, Saxena M, Ahmed KA. Cytokines and chemokines in postovulatory follicle regression of domestic chicken (Gallus gallus domesticus). Dev Comp Immunol. 2008;32(3):253-64. http://doi.org/10.1016/j.dci.2007.05.011. PMid:17692913.

Takahashi H, Alves CRR, Stanford KI, Middelbeek RJW, Nigro P, Ryan RE, Xue R, Sakaguchi M, Lynes MD, So K, Mul JD, Lee M-Y, Balan E, Pan H, Dreyfuss JM, Hirshman MF, Azhar M, Hannukainen JC, Nuutila P, Kalliokoski KK, Nielsen S, Pedersen BK, Kahn CR, Tseng Y-H, Goodyear LJ. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab. 2019;1(2):291-303. http://doi.org/10.1038/s42255-018-0030-7. PMid:31032475.

Wang J, Pan Y, Xu G, Zhang R, Zhang W, Wang X, Wu R, Zhao R, Cui Y, Yu S. Preparation and preliminary application of yak (Bos grunniens) fas-associated factor 1 polyclonal antibody. Acta Vet Zootech Sin. 2023a;54:3369-82. http://doi.org/10.11843/j.issn.0366-6964.2023.08.022.

Wang M-Y, Liu W-J, Wu L-Y, Wang G, Zhang C-L, Liu J. The research progress in transforming growth factor-β2. Cells. 2023b;12(23):2739. http://doi.org/10.3390/cells12232739. PMid:38067167.

Wang Q. Study on genetic polymorphisms of four hypoxia adaptation genes in yak [dissertation]. Chengdu: Southwest Minzu University; 2017.

Wang X, Zou C, Li C, Zhao S. Mechanism of furin, TGF-β2 and TNF-α in missed abortion. Adv Clin Med. 2021;11(04):1501-8. http://doi.org/10.12677/ACM.2021.114215.

Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. Regulation of TGF-β superfamily signaling by SMAD mono-ubiquitination. Cells. 2014;3(4):981-93. http://doi.org/10.3390/cells3040981. PMid:25317929.

Yamagishi T, Ando K, Nakamura H, Nakajima Y. Expression of the Tgf-β2 gene during chick embryogenesis. Anat Rec. 2012;295(2):257-67. http://doi.org/10.1002/ar.22400. PMid:22190426.

Zare H, Mir Mohammad Sadeghi H, Akbari V. Optimization of fermentation conditions for reteplase expression by Escherichia coli using response surface methodology. Avicenna J Med Biotechnol. 2019;11(2):162-8. PMid:31057718.

Zhang Q. Observation on the histological structure in different parts of skin and expression of TGF-β2 and HIF-1α in young yak (Bos grunniens) [dissertation]. Gansu: Gansu Agricultural University; 2021. https://doi.org/10.27025/d.cnki.ggsnu.2021.000141.
 


Submitted date:
01/31/2025

Accepted date:
07/02/2025

68f7c9cba9539570fc6e8d23 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections