Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0051
Animal Reproduction (AR)
ORIGINAL ARTICLE

Small extracellular vesicles from follicular fluid as transport carriers of LHR: possible mediators of follicle growth and dominance acquisition in bovine reproduction

Luca Angi Souza; Nico G. Menjivar; Ahmed Gad; Paulo Henrique Groppo Rodrigues; Letícia Rabello da Silva Sousa; Paola Maria da Silva Rosa; Alessandra Bridi; Dawit Tesfaye; Juliano Coelho da Silveira

Downloads: 1
Views: 32

Abstract

Luteinizing hormone (LH) plays a crucial role in follicle development, ovulation induction, and the regulation of key reproductive events. However, the efficacy of LH within the follicular microenvironment largely depends on the capacity of follicular cells to express its receptor. This study aims to investigate whether granulosa cells (GCs) can acquire LHR through extracellular vesicles (sEVs) present in follicular fluid (FF) from follicles of varying sizes. In the first experiment, GCs and sEVs were collected from the FF of small (3–5 mm), medium (5.1–7 mm), and large (7.1–9 mm) ovarian follicles from Bos taurus indicus cows. In the second experiment, GCs and sEVs were collected from the FF of small (3–6 mm) and large (8–14 mm) follicles from Bos taurus taurus cows. Initially, we assessed the ability of sEVs to carry LHR mRNA by comparing its expression profiles in sEVs derived from different size follicles. Our findings revealed that as follicular development progresses, LHR levels in FF sEVs decrease, while in corresponding GCs, from which the sEVs primarily originate, show increased LHR expression. To further investigate whether GCs represent an additional source of FF sEVs carrying LHR mRNA, GC cultures were established and sEVs secreted into the culture medium (ME-sEVs) were analyzed for LHR mRNA levels. A similar pattern was observed in ME-sEVs derived from GCs of small versus large follicles, with decreased LHR mRNA levels in sEVs secreted by GCs from large follicles compared to small follicles. This suggests that LHR is likely packaged into sEVs in small follicles stage, and shuttled into follicular cells during follicular growth, preparing them for the ovulatory stimulus. Our study uncovers a possible mechanism of LHR acquisition by GCs, which involves EVs and can possibly be involved in follicle quality and ability to respond to LH stimulus.

Keywords

luteinizing hormone receptor, mRNA, extracellular vesicles, cargo transfer, follicular development

References

Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013;8(11):e80181. http://doi.org/10.1371/journal.pone.0080181. PMid:24244642.

Andrade GM, Da Silveira JC, Perrini C, Del Collado M, Gebremedhn S, Tesfaye D, Meirelles FV, Perecin F. The role of the PI3K-Akt signaling pathway in the developmental competence of bovine oocytes. PLoS One. 2017;12(9):e0185045. http://doi.org/10.1371/journal.pone.0185045. PMid:28922408.

Arnhold IJP, Latronico AC, Batista MC, Mendonca BB. Menstrual disorders and infertility caused by inactivating mutations of the luteinizing hormone receptor gene. Fertil Steril. 1999;71(4):597-601. http://doi.org/10.1016/S0015-0282(98)00517-2. PMid:10202864.

Beg MA, Bergfelt DR, Kot K, Wiltbank MC, Ginther OJ. Follicular-fluid factors and granulosa-cell gene expression associated with follicle deviation in cattle. Biol Reprod. 2001;64(2):432-41. http://doi.org/10.1095/biolreprod64.2.432. PMid:11159344.

Ereno RL, Loureiro B, Castilho ACS, Machado MF, Pegorer MF, Satrapa RA, Nogueira MF, Buratini J, Barros CM. Expression of mRNA encoding the LH receptor (LHR) and LHR binding protein in granulosa cells from nelore (Bos indicus) heifers around follicle deviation. Reprod Domest Anim. 2015;50(6):952-7. http://doi.org/10.1111/rda.12614. PMid:26446749.

Evans ACO, Ireland JLH, Winn ME, Lonergan P, Smith GW, Coussens PM, Ireland JJ. Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle. Biol Reprod. 2004;70(5):1475-84. http://doi.org/10.1095/biolreprod.103.025114. PMid:14736815.

Ferguson J, Ovarian dysfunction in lactating cows. WCDS Adv Dairy Technol. 2017;29:173-81.

Ginther OJ, Beg MA, Donadeu FX, Bergfelt DR. Mechanism of follicle deviation in monovular farm species. Anim Reprod Sci. 2003;78(3–4):239-57. http://doi.org/10.1016/S0378-4320(03)00093-9. PMid:12818647.

Gonella-Diaza AM, Lopes E, Silva KR, Nociti RP, Andrade GM, Atuesta-Bustos JE, Silveira JC, Meirelles FV, Binelli M. Steroidal regulation of oviductal micrornas is associated with microrna-processing in beef cows. Int J Mol Sci. 2021;22(2):1-25. http://doi.org/10.3390/ijms22020953. PMid:33477993.

Gong JG, Campbell BK, Bramley TA, Gutierrez CG, Peters AR, Webb R. Suppression in the secretion of follicle-stimulating hormone and luteinizing hormone, and ovarian follicle development in heifers continuously infused with a gonadotropin-releasing hormone agonist. Biol Reprod. 1996;55(1):68-74. http://doi.org/10.1095/biolreprod55.1.68. PMid:8793060.

Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci. 1980;63(1):155-60. http://doi.org/10.3168/jds.S0022-0302(80)82901-8. PMid:7372895.

Landry DA, Sirard MA. Follicle capacitation: A meta-analysis to investigate the transcriptome dynamics following follicle-stimulating hormone decline in bovine granulosa cells. Biol Reprod. 2018;99(4):877-87. http://doi.org/10.1093/biolre/ioy090. PMid:29668885.

Lange-Consiglio A, Perrini C, Albini G, Modina S, Lodde V, Orsini E, Esposti P, Cremonesi F. Oviductal microvesicles and their effect on in vitro maturation of canine oocytes. Reproduction. 2017;154(2):167-80. http://doi.org/10.1530/REP-17-0117. PMid:28652254.

Latronico AC, Arnhold IP. Inactivating mutations of the human luteinizing hormone receptor in both sexes. Semin Reprod Med. 2012;30(5):382-6. http://doi.org/10.1055/s-0032-1324721. PMid:23044874.

Li Y, Lin J, Fu S, Li L, Huang Z, Yang H, Liang X, Qin Y, Zhou J, Liu D, Luo Z. The mystery of transient pregnancy-induced cushing’s syndrome: a case report and literature review highlighting GNAS somatic mutations and LHCGR overexpression. Endocrine. 2024;83(2):473-82. http://doi.org/10.1007/s12020-023-03549-7. PMid:37828397.

Lopera-Vasquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltran-Brena P, Calle A, Redruello A, López-Martín S, Gutierrez-Adán A, Yañez-Mó M, Ramirez MÁ, Rizos D. Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One. 2016;11(2):e0148083. http://doi.org/10.1371/journal.pone.0148083. PMid:26845570.

Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P, Fair T. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev. 2014;26(2):337-45. http://doi.org/10.1071/RD13007. PMid:23514964.

Nair AK, Kash JC, Peegel H, Menon KMJ. Post-transcriptional regulation of luteinizing hormone receptor mRNA in the ovary by a novel mRNA-binding protein. J Biol Chem. 2002;277(24):21468-73. http://doi.org/10.1074/jbc.M111653200. PMid:11940568.

Nogueira MF, Buratini J Jr, Price C, Castilho A, Pinto M, Barros C. Expression of LH receptor mRNA splice variants in bovine granulosa cells: changes with follicle size and regulation by FSH. Mol Reprod Dev. 2007;74(6):680-6. http://doi.org/10.1002/mrd.20656. PMid:17154302.

Noseir WMB. Ovarian follicular activity and hormonal profile during estrous cycle in cows: the development of 2 versus 3 waves. Reprod Biol Endocrinol. 2003;1(1):50. http://doi.org/10.1186/1477-7827-1-50. PMid:12848893.

Pakarainen T, Ahtiainen P, Zhang FP, Rulli S, Poutanen M, Huhtaniemi I. Extragonadal LH/hCG action-Not yet time to rewrite textbooks. Mol Cell Endocrinol. 2007;269(1-2):9-16. http://doi.org/10.1016/j.mce.2006.10.019. PMid:17350753.

Pandey A, Gupta SC, Gupta N. Effect of FSH and LH hormones on oocyte maturation of buffalo and gene expression analysis of their receptors and Cx43 in maturing oocytes. Zygote. 2010;18(3):231-4. http://doi.org/10.1017/S096719940999030X. PMid:20128947.

Salilew-Wondim D, Ahmad I, Gebremedhn S, Sahadevan S, Hossain MM, Rings F, Hoelker M, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D. The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One. 2014;9(9):e106795. http://doi.org/10.1371/journal.pone.0106795. PMid:25192015.

Santos PH, Satrapa RA, Fontes PK, Franchi FF, Razza EM, Mani F, Nogueira MFG, Barros CM, Castilho ACS. Effect of superstimulation on the expression of microRNAs and genes involved in steroidogenesis and ovulation in Nelore cows. Theriogenology. 2018;110:192-200. http://doi.org/10.1016/j.theriogenology.2017.12.045. PMid:29407901.

Santos PH, Nunes SG, Franchi FF, Giroto AB, Fontes PK, Pinheiro VG, Castilho ACS. Expression of bta-miR-222 and LHCGR in bovine cultured granulosa cells: impact of follicle deviation and regulation by FSH/insulin in vitro. Theriogenology. 2022;182:71-7. http://doi.org/10.1016/j.theriogenology.2022.01.034. PMid:35131675.

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-8. http://doi.org/10.1038/nprot.2008.73. PMid:18546601.

Silveira JC, Carnevale EM, Winger QA, Bouma GJ. Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod Biol Endocrinol. 2014;12(1):44. http://doi.org/10.1186/1477-7827-12-44. PMid:24884710.

Silveira JC, Andrade GM, Collado M, Sampaio RV, Sangalli JR, Silva LA, Pinaffi VL, Jardim IB, Cesar MC, Nogueira MFG, Cesar ASM, Coutinho LL, Pereira RW, Perecin F, Meirelles FV. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017;12(6):e0179451. http://doi.org/10.1371/journal.pone.0179451. PMid:28617821.

Silveira J, Andrade GM, Perecin F, Meireles FV, Winger QA, Bouma GJ. Isolation and analysis of exosomal MicroRNAs from ovarian follicular fluid. Methods Mol Biol. 2018;1733:53-63. http://doi.org/10.1007/978-1-4939-7601-0_4. PMid:29435922.

Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8(19):4083-99. http://doi.org/10.1002/pmic.200800109. PMid:18780348.

Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581-93. http://doi.org/10.1038/nri2567. PMid:19498381.
 


Submitted date:
05/08/2025

Accepted date:
09/10/2025

69445d43a953953551043a43 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections