Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0067
Animal Reproduction (AR)
Thematic Section: 38th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Metabolic and endocrinologic interplay in the peri-ovulatory follicle to support the cumulus-oocyte-complex towards full competence

Hilde Aardema; Peter L. A. M. Vos; Alberto Maria Luciano; José Buratini

Downloads: 0
Views: 72

Abstract

The increase in free fatty acid (FFA) levels in the circulation and follicular fluid in response to the negative energy balance of dairy cows has received significant attention during the last decades. However, until recently the potential effect of FFA on the periovulatory steroid environment has been overlooked. The well-orchestrated luteinizing hormone (LH) peak induces a steroid shift in the periovulatory follicle, from Estradiol-17β (E2) dominance around the LH peak towards progesterone (P4) dominance around ovulation, and is a prerequisite for optimal cytoplasmic and nuclear maturation in the oocyte and oocyte developmental competence. Recent insights in literature demonstrate a link between saturated and mono-unsaturated FFAs and the expression of gonadotrophin receptors, follicle stimulating hormone (FSH)R and LHR, including steroid related enzymes and E2 synthesis by in vitro granulosa cells. The current review will focus on the potential role of mono-unsaturated oleic acid, the most abundant FFA in follicular fluid, on steroidogenesis and its potential effect on the cumulus-oocyte-complex (COC) during final maturation. The data of this review suggest the potential for a regulatory interlinked system, which includes the oocyte secreted factor FGF10 and oleic acid, that modulates the steroidogenic switch from E2 to P4 in the periovulatory follicle, via actions that involve the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in support of the delicate and well-orchestrated dialogue between the oocyte and cumulus cells during final maturation of COCs.

Keywords

free fatty acids, peri-ovulatory follicle, hormones, cumulus-oocyte-complex, final maturation

References

Aardema H, Roelen BAJ, Gadella BM, Vos PL. Metabolic stress impairs follicular growth in superovulated cows. Reprod Fertil Dev. 2010;(23):189.

Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod. 2011;85(1):62-9. http://doi.org/10.1095/biolreprod.110.088815. PMid:21311036.

Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HTA, Roelen BA, Vos PLAM, Helms JB, Gadella BM. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod. 2013a;88(6):164. http://doi.org/10.1095/biolreprod.112.106062. PMid:23616596.

Aardema H, Roelen BA, van Tol HTA, Oei CHY, Gadella BM, Vos PLAM. Follicular 17beta-estradiol and progesterone concentrations and degree of cumulus cell expansion as predictors of in vivo-matured oocyte developmental competence in superstimulated heifers. Theriogenology. 2013b;80(6):576-83. http://doi.org/10.1016/j.theriogenology.2013.05.025. PMid:23831113.

Aardema H, Gadella BM, van de Lest CH, Brouwers JF, Stout TA, Roelen BA, Vos PL. Free fatty acid levels in fluid of dominant follicles at the preferred insemination time in dairy cows are not affected by early postpartum fatty acid stress. J Dairy Sci. 2015;98(4):2322-36. http://doi.org/10.3168/jds.2014-7970. PMid:25648816.

Aardema H, van Tol HTA, Wubbolts RW, Brouwers JFHM, Gadella BM, Roelen BAJ. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod. 2017;96(5):982-92. http://doi.org/10.1095/biolreprod.116.146159. PMid:28486699.

Aardema H, Vos PLAM, Gadella BM. Cumulus cells protect the oocyte against saturated free fatty acids. Anim Reprod. 2018;15(Suppl 1):737-50. http://doi.org/10.21451/1984-3143-AR2018-0063. PMid:36249840.

Aardema H, van Tol HTA, Vos PLAM. Steroid concentrations in bovine follicular fluid are affected by metabolic stress. Reprod Fertil Dev. 2019;32(2):226-7. http://doi.org/10.1071/RDv32n2Ab196.

Abbassi L, El-Hayek S, Carvalho KF, Wang W, Yang Q, Granados-Aparici S, Mondadori R, Bordignon V, Clarke HJ. Epidermal growth factor receptor signaling uncouples germ cells from the somatic follicular compartment at ovulation. Nat Commun. 2021;12(1):1438. http://doi.org/10.1038/s41467-021-21644-z. PMid:33664246.

Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H. Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev. 1999;53(3):325-35. http://doi.org/10.1002/(SICI)1098-2795(199907)53:3<325::AID-MRD8>3.0.CO;2-T. PMid:10369393.

Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647-53. http://doi.org/10.1530/rep.0.1210647. PMid:11427152.

Allen JJ, Herrick SL, Fortune JE. Regulation of steroidogenesis in fetal bovine ovaries: differential effects of LH and FSH. J Mol Endocrinol. 2016;57(4):275-86. http://doi.org/10.1530/JME-16-0152. PMid:27698208.

Baddela VS, Michaelis M, Sharma A, Plinski C, Viergutz T, Vanselow J. Estradiol production of granulosa cells is unaffected by the physiological mix of nonesterified fatty acids in follicular fluid. J Biol Chem. 2022a;298(10):102477. http://doi.org/10.1016/j.jbc.2022.102477. PMid:36096202.

Baddela VS, Sharma A, Plinski C, Vanselow J. Palmitic acid protects granulosa cells from oleic acid induced steatosis and rescues progesterone production via cAMP dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids. 2022b;1867(8):159159. http://doi.org/10.1016/j.bbalip.2022.159159. PMid:35421604.

Baddela VS, Michaelis M, Tao X, Koczan D, Vanselow J. ERK1/2-SOX9/FOXL2 axis regulates ovarian steroidogenesis and favors the follicular-luteal transition. Life Sci Alliance. 2023;6(10):e202302100. http://doi.org/10.26508/lsa.202302100. PMid:37532283.

Beker-van Woudenberg AR, van Tol HT, Roelen BA, Colenbrander B, Bevers MM. Estradiol and its membrane-impermeable conjugate (estradiol-bovine serum albumin) during in vitro maturation of bovine oocytes: effects on nuclear and cytoplasmic maturation, cytoskeleton, and embryo quality. Biol Reprod. 2004;70(5):1465-74. http://doi.org/10.1095/biolreprod.103.025684. PMid:14724136.

Belkaid A, Duguay SR, Ouellette RJ, Surette ME. 17beta-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer. 2015;15(1):440-1. http://doi.org/10.1186/s12885-015-1452-1. PMid:26022099.

Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction. 2010;139(6):1047-55. http://doi.org/10.1530/REP-10-0068. PMid:20385782.

Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA. 1967;58(2):560-7. http://doi.org/10.1073/pnas.58.2.560. PMid:5233459.

Bilby TR, Block J, Amaral BC, Sa O Fo, Silvestre FT, Hansen PJ, Staples CR, Thatcher WW. Effects of dietary unsaturated fatty acids on oocyte quality and follicular development in lactating dairy cows in summer. J Dairy Sci. 2006;89(10):3891-903. http://doi.org/10.3168/jds.S0022-0302(06)72432-8. PMid:16960065.

Britt JH. Impacts of early postpartum metabolism on follicular development and fertility. The Bovine Proceedings. 1992;24:39-43. http://doi.org/10.21423/aabppro19916706.

Buratini J Jr, Pinto MGL, Castilho AC, Amorim RL, Giometti IC, Portela VM, Nicola ES, Price CA. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol Reprod. 2007;77(4):743-50. http://doi.org/10.1095/biolreprod.107.062273. PMid:17582010.

Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update. 2022;28(2):232-54. http://doi.org/10.1093/humupd/dmab044. PMid:34969065.

Buratini J, Dellaqua TT, de Lima PF, Renzini MM, Canto MD, Price CA. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry. J Assist Reprod Genet. 2023;40(8):1961-71. http://doi.org/10.1007/s10815-023-02822-y. PMid:37204638.

Butler WR, Smith RD. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. J Dairy Sci. 1989;72(3):767-83. http://doi.org/10.3168/jds.S0022-0302(89)79169-4. PMid:2654227.

Caixeta ES, Sutton-McDowall ML, Gilchrist RB, Thompson JG, Price CA, Machado MF, Lima PF, Buratini J. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction. 2013;146(1):27-35. http://doi.org/10.1530/REP-13-0079. PMid:23641036.

Castilho ACS, Price CA, Dalanezi F, Ereno RL, Machado MF, Barros CM, Gasperin BG, Goncalves PBD, Buratini J. Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle. Reprod Fertil Dev. 2017;29(2):234-43. http://doi.org/10.1071/RD15017. PMid:26194863.

Chaffin CL, Dissen GA, Stouffer RL. Hormonal regulation of steroidogenic enzyme expression in granulosa cells during the peri-ovulatory interval in monkeys. Mol Hum Reprod. 2000;6(1):11-8. http://doi.org/10.1093/molehr/6.1.11. PMid:10611255.

Chen J, Wang Y, Meng W, Zhao R, Lin W, Xiao H, Liao Y. Stearoyl-CoA desaturases1 accelerates non-small cell lung cancer metastasis by promoting aromatase expression to improve estrogen synthesis. Int J Mol Sci. 2023;24(7):6826. http://doi.org/10.3390/ijms24076826. PMid:37047797.

Clarke HJ. Transzonal projections: essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev. 2022;89(11):509-25. http://doi.org/10.1002/mrd.23645. PMid:36112806.

Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50(8):1771-7. http://doi.org/10.2337/diabetes.50.8.1771. PMid:11473037.

Coll T, Eyre E, Rodriguez-Calvo R, Palomer X, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283(17):11107-16. http://doi.org/10.1074/jbc.M708700200. PMid:18281277.

Combelles CMH, Carabatsos MJ, Kumar TR, Matzuk MM, Albertini DF. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol Reprod Dev. 2004;69(3):347-55. http://doi.org/10.1002/mrd.20128. PMid:15349847.

Conti M, Hsieh M, Zamah AM, Oh JS. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol. 2012;356(1-2):65-73. http://doi.org/10.1016/j.mce.2011.11.002. PMid:22101318.

Coyral-Castel S, Rame C, Fatet A, Dupont J. Effects of unsaturated fatty acids on progesterone secretion and selected protein kinases in goat granulosa cells. Domest Anim Endocrinol. 2010;38(4):272-83. http://doi.org/10.1016/j.domaniend.2009.12.002. PMid:20097509.

de Loos FA, Bevers MM, Dieleman SJ, Kruip TA. Follicular and oocyte maturation in cows treated for superovulation. Theriogenology. 1991a;35(3):537-46. http://doi.org/10.1016/0093-691X(91)90450-R. PMid:16726923.

de Loos F, Kastrop P, van Maurik P, van Beneden TH, Kruip TA. Heterologous cell contacts and metabolic coupling in bovine cumulus oocyte complexes. Mol Reprod Dev. 1991b;28(3):255-9. http://doi.org/10.1002/mrd.1080280307. PMid:2015084.

Del Collado M, Silveira JC, Sangalli JR, Andrade GM, Sousa LRDS, Silva LA, Meirelles FV, Perecin F. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci Rep. 2017;7(1):2645-9. http://doi.org/10.1038/s41598-017-02467-9. PMid:28572619.

Dieleman SJ, Kruip TA, Fontijne P, de Jong WH, van der Weyden GC. Changes in oestradiol, progesterone and testosterone concentrations in follicular fluid and in the micromorphology of preovulatory bovine follicles relative to the peak of luteinizing hormone. J Endocrinol. 1983;97(1):31-42, NP. http://doi.org/10.1677/joe.0.0970031. PMid:6682433.

Dieleman SJ, Hendriksen PJ, Viuff D, Thomsen PD, Hyttel P, Knijn HM, Wrenzycki C, Kruip TA, Niemann H, Gadella BM, Bevers MM, Vos PL. Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology. 2002;57(1):5-20. http://doi.org/10.1016/S0093-691X(01)00655-0. PMid:11775980.

Diskin MG, Murphy JJ, Sreenan JM. Embryo survival in dairy cows managed under pastoral conditions. Anim Reprod Sci. 2006;96(3-4):297-311. http://doi.org/10.1016/j.anireprosci.2006.08.008. PMid:16963203.

Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev. 2009;76(9):844-53. http://doi.org/10.1002/mrd.21047. PMid:19455666.

Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83(6):909-18. http://doi.org/10.1095/biolreprod.110.084145. PMid:20686180.

Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL. Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. Biol Reprod. 2011;85(3):548-55. http://doi.org/10.1095/biolreprod.110.090415. PMid:21613630.

Fayezi S, Novin MG, Darabi M, Norouzian M, Nouri M, Farzadi L, Darabi M. Primary culture of human cumulus cells requires stearoyl-coenzyme a desaturase 1 activity for steroidogenesis and enhancing oocyte in vitro maturation. Reprod Sci. 2018;25(6):844-53. http://doi.org/10.1177/1933719117698578. PMid:28345489.

Ferguson EM, Leese HJ. Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil. 1999;116(2):373-8. http://doi.org/10.1530/jrf.0.1160373. PMid:10615263.

Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://doi.org/10.1002/mrd.20494. PMid:16804881.

Ferst JG, Missio D, Bertolin K, Gasperin BG, Leivas FG, Bordignon V, Goncalves PB, Ferreira R. Intrafollicular injection of nonesterified fatty acids impaired dominant follicle growth in cattle. Anim Reprod Sci. 2020;219:106536. http://doi.org/10.1016/j.anireprosci.2020.106536. PMid:32828411.

Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22(12):3069-77. http://doi.org/10.1093/humrep/dem336. PMid:17951581.

Flowers MT, Ntambi JM. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol. 2008;19(3):248-56. http://doi.org/10.1097/MOL.0b013e3282f9b54d. PMid:18460915.

Fortune JE, Quirk SM. Regulation of steroidogenesis in bovine preovulatory follicles. J Anim Sci [serial on the Internet]. 1988 [cited 2025 May 21];66(Suppl 2):1-8. Available from: http://www.journalofanimalscience.org/content/66/Supplement_2/1

Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina SC, Fadini R, Dal Canto M, Renzini MM, Albertini DF, Luciano AM. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biol Reprod. 2014;91(3):61. http://doi.org/10.1095/biolreprod.114.118869. PMid:25078681.

Garcia Barros R, Lodde V, Franciosi F, Luciano AM. A refined culture system of oocytes from early antral follicles promotes oocyte maturation and embryo development in cattle. Reproduction. 2023;165(2):221-33. http://doi.org/10.1530/REP-22-0277. PMid:36473031.

Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159-77. http://doi.org/10.1093/humupd/dmm040. PMid:18175787.

Hendriksen P, Vos P, Steenweg W, Bevers MM, Dieleman SJ. Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology. 2000;53(1):11-20. http://doi.org/10.1016/S0093-691X(99)00236-8. PMid:10735058.

Henique C, Mansouri A, Fumey G, Lenoir V, Girard J, Bouillaud F, Prip-Buus C, Cohen I. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J Biol Chem. 2010;285(47):36818-27. http://doi.org/10.1074/jbc.M110.170431. PMid:20837491.

Homa ST, Brown CA. Changes in linoleic acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. J Reprod Fertil. 1992;94(1):153-60. http://doi.org/10.1530/jrf.0.0940153. PMid:1552477.

Hyttel P, Callesen H, Greve T. Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. J Reprod Fertil. 1986;76(2):645-56. http://doi.org/10.1530/jrf.0.0760645. PMid:3084771.

Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology. 1997;47(1):23-32. http://doi.org/10.1016/S0093-691X(96)00336-6.

Ide Y, Waki M, Hayasaka T, Nishio T, Morita Y, Tanaka H, Sasaki T, Koizumi K, Matsunuma R, Hosokawa Y, Ogura H, Shiiya N, Setou M. HHuman breast cancer tissues contain abundant phosphatidylcholine(36∶1) with high stearoyl-CoA desaturase-1 expression. PLoS One. 2013;8(4):e61204. http://doi.org/10.1371/journal.pone.0061204. PMid:23613812.

Jorritsma R, de Groot MW, Vos PL, Kruip TA, Wensing T, Noordhuizen JP. Acute fasting in heifers as a model for assessing the relationship between plasma and follicular fluid NEFA concentrations. Theriogenology. 2003;60(1):151-61. http://doi.org/10.1016/S0093-691X(02)01358-4. PMid:12620588.

Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, Moley KH. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95(6):1970-4. http://doi.org/10.1016/j.fertnstert.2011.01.154. PMid:21353671.

Kim JY, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction. 2001;122(1):131-8. http://doi.org/10.1530/rep.0.1220131. PMid:11425337.

Komar CM, Berndtson AK, Evans AC, Fortune JE. Decline in circulating estradiol during the periovulatory period is correlated with decreases in estradiol and androgen, and in messenger RNA for p450 aromatase and p450 17alpha-hydroxylase, in bovine preovulatory follicles. Biol Reprod. 2001;64(6):1797-805. http://doi.org/10.1095/biolreprod64.6.1797. PMid:11369611.

Kruip TA, Cran DG, van Beneden TH, Dieleman SJ. Structural changes in bovine oocytes during final maturation in vivo. Gamete Res. 1983;8(1):29-47. http://doi.org/10.1002/mrd.1120080105.

Kruip TA, Dieleman SJ. Steroid hormone concentrations in the fluid of bovine follicles relative to size, quality and stage of the oestrus cycle. Theriogenology. 1985;24(4):395-408. http://doi.org/10.1016/0093-691X(85)90046-9. PMid:16726094.

Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G, van Soom A. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130(4):485-95. http://doi.org/10.1530/rep.1.00735. PMid:16183866.

Leroy JL, van Soom A, Opsomer G, Goovaerts IG, Bols PE. Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim. 2008;43(5):623-32. http://doi.org/10.1111/j.1439-0531.2007.00961.x. PMid:18384498.

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14(3):141-52. http://doi.org/10.1038/nrm3531. PMid:23429793.

Lima PF, Ormond CM, Caixeta ES, Barros RG, Price CA, Buratini J. Effect of kit ligand on natriuretic peptide precursor C and oocyte maturation in cattle. Reproduction. 2016;152(5):481-9. http://doi.org/10.1530/REP-16-0155. PMid:27492081.

Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003;100(6):3077-82. http://doi.org/10.1073/pnas.0630588100. PMid:12629214.

Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001;276(18):14890-5. http://doi.org/10.1074/jbc.M010286200. PMid:11278654.

Liu X, Strable MS, Ntambi JM. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv Nutr. 2011;2(1):15-22. http://doi.org/10.3945/an.110.000125. PMid:22211186.

Lodde V, Modina S, Maddox-Hyttel P, Franciosi F, Lauria A, Luciano AM. Oocyte morphology and transcriptional silencing in relation to chromatin remodeling during the final phases of bovine oocyte growth. Mol Reprod Dev. 2008;75(5):915-24. http://doi.org/10.1002/mrd.20824. PMid:17948251.

Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod. 2015;92(1):16. http://doi.org/10.1095/biolreprod.114.120634. PMid:25297544.

Lü J, Izvolsky KI, Qian J, Cardoso WV. Identification of FGF10 targets in the embryonic lung epithelium during bud morphogenesis. J Biol Chem. 2005;280(6):4834-41. http://doi.org/10.1074/jbc.M410714200. PMid:15556938.

Luciano AM, Modina S, Vassena R, Milanesi E, Lauria A, Gandolfi F. Role of intracellular cyclic adenosine 3′,5′-monophosphate concentration and oocyte-cumulus cells communications on the acquisition of the developmental competence during in vitro maturation of bovine oocyte. Biol Reprod. 2004;70(2):465-72. http://doi.org/10.1095/biolreprod.103.020644. PMid:14568913.

Luciano AM, Franciosi F, Modina SC, Lodde V. Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biol Reprod. 2011;85(6):1252-9. http://doi.org/10.1095/biolreprod.111.092858. PMid:21816847.

Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, Sirard M, Clarke HJ, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod. 2014;91(4):90. http://doi.org/10.1095/biolreprod.114.119867. PMid:25143353.

Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001;50(1):69-76. http://doi.org/10.2337/diabetes.50.1.69. PMid:11147797.

Marei WF, Wathes DC, Fouladi-Nashta AA. The effect of linolenic Acid on bovine oocyte maturation and development. Biol Reprod. 2009;81(6):1064-72. http://doi.org/10.1095/biolreprod.109.076851. PMid:19587335.

Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139(6):979-88. http://doi.org/10.1530/REP-09-0503. PMid:20215338.

Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod. 2017;96(6):1181-96. http://doi.org/10.1093/biolre/iox046. PMid:28520897.

Matoba A, Matsuyama N, Shibata S, Masaki E, Emala CWS Sr, Mizuta K. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2018;314(3):L333-48. http://doi.org/10.1152/ajplung.00129.2017. PMid:29097424.

McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil. 2000;118(1):163-70. http://doi.org/10.1530/reprod/118.1.163. PMid:10793638.

McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24(1):59-67. http://doi.org/10.1071/RD11907. PMid:22394718.

Mishra R, Simonson MS. Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G. Cardiovasc Diabetol. 2005;4(1):2. http://doi.org/10.1186/1475-2840-4-2. PMid:15642122.

Moallem U, Folman Y, Bor A, Arav A, Sklan D. Effect of calcium soaps of fatty acids and administration of somatotropin on milk production, preovulatory follicular development, and plasma and follicular fluid lipid composition in high yielding dairy cows. J Dairy Sci. 1999;82(11):2358-68. http://doi.org/10.3168/jds.S0022-0302(99)75486-X. PMid:10575602.

Modina S, Luciano AM, Vassena R, Baraldi-Scesi L, Lauria A, Gandolfi F. Oocyte developmental competence after in vitro maturation depends on the persistence of cumulus-oocyte comunications which are linked to the intracellular concentration of cAMP. Ital J Anat Embryol. 2001;106(2, Suppl 2):241-8. PMid:11732583.

Moorey SE, Hessock EA, Edwards JL. Preovulatory follicle contributions to oocyte competence in cattle: importance of the ever-evolving intrafollicular environment leading up to the luteinizing hormone surge. J Anim Sci. 2022;100(7):skac153. http://doi.org/10.1093/jas/skac153. PMid:35772757.

Moreau C, Froment P, Tosca L, Moreau V, Dupont J. Expression and regulation of the SCD2 desaturase in the rat ovary. Biol Reprod. 2006;74(1):75-87. http://doi.org/10.1095/biolreprod.105.044545. PMid:16207839.

Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, Nawata H. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590-7. http://doi.org/10.1210/endo.142.8.8293. PMid:11459807.

Murphy BD. Models of luteinization. Biol Reprod. 2000;63(1):2-11. http://doi.org/10.1095/biolreprod63.1.2. PMid:10859235.

Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly TJ Jr, Lane MD. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem. 1988;263(33):17291-300. http://doi.org/10.1016/S0021-9258(19)77834-X. PMid:2903162.

Pawlak P, Malyszka N, Szczerbal I, Kolodziejski P. Fatty acid induced lipolysis influences embryo development, gene expression and lipid droplet formation in the porcine cumulus cellsdagger. Biol Reprod. 2020;103(1):36-48. http://doi.org/10.1093/biolre/ioaa045. PMid:32318713.

Piscopo F, Gasparrini B, van Halderen R, Brouwers JF, van den Broek J, van Tol HTA, Vos PLAM, Aardema H. Periparturient oleic acid-rich fat supplementation affects the lipid profile in blood and results in an increased oocyte yield in postpartum dairy cows. Theriogenology. 2025;236:33-44. http://doi.org/10.1016/j.theriogenology.2025.01.018. PMid:39904068.

Przygrodzka E, Hou X, Zhang P, Plewes MR, Franco R, Davis JS. PKA and AMPK signaling pathways differentially regulate luteal steroidogenesis. Endocrinology. 2021;162(4):bqab015. http://doi.org/10.1210/endocr/bqab015. PMid:33502468.

Renaville B, Bacciu N, Comin A, Motta M, Poli I, Vanini G, Prandi A. Plasma and follicular fluid fatty acid profiles in dairy cows. Reprod Domest Anim. 2010;45(1):118-21. http://doi.org/10.1111/j.1439-0531.2008.01264.x. PMid:19055554.

Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev. 1994;15(6):725-51. http://doi.org/10.1210/edrv-15-6-725. PMid:7705279.

Sartori R, Sartor-Bergfelt R, Mertens SA, Guenther JN, Parrish JJ, Wiltbank MC. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J Dairy Sci. 2002;85(11):2803-12. http://doi.org/10.3168/jds.S0022-0302(02)74367-1. PMid:12487447.

Scaglia N, Igal RA. Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol. 2008;33(4):839-50. http://doi.org/10.3892/ijo_00000072. PMid:18813799.

Sharma A, Baddela VS, Becker F, Dannenberger D, Viergutz T, Vanselow J. Elevated free fatty acids affect bovine granulosa cell function: a molecular cue for compromised reproduction during negative energy balance. Endocr Connect. 2019;8(5):493-505. http://doi.org/10.1530/EC-19-0011. PMid:30925464.

Sirard M. Folliculogenesis and acquisition of oocyte competence in cows. Anim Reprod. 2019;16(3):449-54. http://doi.org/10.21451/1984-3143-AR2019-0038. PMid:32435288.

Soto-Guzman A, Robledo T, Lopez-Perez M, Salazar EP. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells. Mol Cell Endocrinol. 2008;294(1-2):81-91. http://doi.org/10.1016/j.mce.2008.08.003. PMid:18775472.

Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction. 2006;132(6):829-37. http://doi.org/10.1530/REP-06-0073. PMid:17127743.

Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20-30. http://doi.org/10.1016/j.ydbio.2004.11.027. PMid:15708555.

Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, MacMillan KL, Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol Reprod. 2016;94(1):23. http://doi.org/10.1095/biolreprod.115.131862. PMid:26658709.

Tao X, Rahimi M, Michaelis M, Gors S, Brenmoehl J, Vanselow J, Baddela VS. Saturated fatty acids inhibit unsaturated fatty acid induced glucose uptake involving GLUT10 and aerobic glycolysis in bovine granulosa cells. Sci Rep. 2024;14(1):9888. http://doi.org/10.1038/s41598-024-59883-x. PMid:38688953.

Tosca L, Froment P, Solnais P, Ferre P, Foufelle F, Dupont J. Adenosine 5′-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology. 2005;146(10):4500-13. http://doi.org/10.1210/en.2005-0301. PMid:16020477.

Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M, Kruif A. Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87(1-2):33-44. http://doi.org/10.1016/j.anireprosci.2004.09.006. PMid:15885439.

Walters AH, Bailey TL, Pearson RE, Gwazdauskas FC. Parity-related changes in bovine follicle and oocyte populations, oocyte quality, and hormones to 90 days postpartum. J Dairy Sci. 2002;85(4):824-32. http://doi.org/10.3168/jds.S0022-0302(02)74142-8. PMid:12018429.

Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81(1):687-714. http://doi.org/10.1146/annurev-biochem-061009-102430. PMid:22524315.

Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun. 2005;332(3):735-42. http://doi.org/10.1016/j.bbrc.2005.05.013. PMid:15907797.

Warzych E, Pawlak P, Pszczola M, Cieslak A, Lechniak D. Prepubertal heifers versus cows: the differences in the follicular environment. Theriogenology. 2017a;87:36-47. http://doi.org/10.1016/j.theriogenology.2016.08.007. PMid:27634396.

Warzych E, Pawlak P, Pszczola M, Cieslak A, Madeja ZE, Lechniak D. Interactions of bovine oocytes with follicular elements with respect to lipid metabolism. Anim Sci J. 2017b;88(10):1491-7. http://doi.org/10.1111/asj.12799. PMid:28402007.

Wonnacott KE, Kwong WY, Hughes J, Salter AM, Lea RG, Garnsworthy PC, Sinclair KD. Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction. 2010;139(1):57-69. http://doi.org/10.1530/REP-09-0219. PMid:19789173.

Wu LL, Russell DL, Norman RJ, Robker RL. Endoplasmic reticulum (ER) stress in cumulus-oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (ΔΨm), and embryo development. Mol Endocrinol. 2012;26(4):562-73. http://doi.org/10.1210/me.2011-1362. PMid:22383462.

Yenuganti VR, Viergutz T, Vanselow J. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells. Gen Comp Endocrinol. 2016;232:134-44. http://doi.org/10.1016/j.ygcen.2016.04.020. PMid:27118706.

Yenuganti VR, Koczan D, Vanselow J. Genome wide effects of oleic acid on cultured bovine granulosa cells: evidence for the activation of pathways favoring folliculo-luteal transition. BMC Genomics. 2021;22(1):486. http://doi.org/10.1186/s12864-021-07817-6. PMid:34187362.

Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells. Biochem Biophys Res Commun. 2008;367(4):729-35. http://doi.org/10.1016/j.bbrc.2007.12.190. PMid:18191634.

Zachut M, Arieli A, Lehrer H, Argov N, Moallem U. Dietary unsaturated fatty acids influence preovulatory follicle characteristics in dairy cows. Reproduction. 2008;135(5):683-92. http://doi.org/10.1530/REP-07-0556. PMid:18296508.

Zhang M, Su Y, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330(6002):366-9. http://doi.org/10.1126/science.1193573. PMid:20947764.

Zhao C, Xu R, Xin S, Jiang B, Feng S, Wang X, Xia C. AMPKα alleviates the inhibitory effect of NEFA on the function of bovine follicular granulosa cells cultured in vitro. Anim Reprod Sci. 2025;276:107831. http://doi.org/10.1016/j.anireprosci.2025.107831. PMid:40164035.

Zhou X, Mo Z, Li Y, Huang L, Yu S, Ge L, Hu Y, Shi S, Zhang L, Wang L, Gao L, Yang G, Chu G. Oleic acid reduces steroidogenesis by changing the lipid type stored in lipid droplets of ovarian granulosa cells. J Anim Sci Biotechnol. 2022;13(1):27. http://doi.org/10.1186/s40104-021-00660-5. PMid:35130983.
 


Submitted date:
05/21/2025

Accepted date:
07/21/2025

68baef48a95395395a4ee1b2 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections