Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.21451/1984-3143-AR2019-0001
Animal Reproduction (AR)
Original Article

Evaluation of the proteomic profiles of ejaculated spermatozoa from Saanen bucks (Capra hircus)

Tatiana Maria Farias Pinto; Raulzito Fernandes Moreira; Maria Nagila Carneiro Matos; Vitória Virginia Magalhães Soares; Mônica Valeria de Almeida Aguiar; Paulo de Tarso Teles Dourado de Aragão; João Garcia Alves Filho; Frederico Bruno Mendes Batista Moreno; Ana Cristina de Oliveira Monteiro-Moreira; Cíntia Renata Rocha Costa; José Luiz de Lima Filho; Angela Maria Xavier Eloy; Rodrigo Maranguape Silva da Cunha

Downloads: 2
Views: 1536

Abstract

Abstract: The Saanen goat breed has been widely explored in breeding programmes; however, there are few reports about the breed’s genetic and molecular composition. Thus, this study aimed to characterize the proteomic profile of spermatozoa from Saanen breeding goats. Five breeding animals with proven fertility were selected, the spermatozoa were collected, and the protein was extracted. Subsequently, the proteins were separated and analysed by two-dimensional electrophoresis and mass spectrometry; the proteins were then identified with the SwissProt database. A total of 31 proteins involved in reproduction were identified, including binding proteins on spermatozoa for fusion with the egg, acrosomal membrane proteins, metabolic enzymes, heat shock proteins, cytoskeletal proteins and spermatozoa motility proteins. The characterization of such proteins clarifies the molecular mechanisms of spermatogenesis and the modifications that ensure the success of fertilization.

Keywords

saanen, sperm, proteomic profiles

References

Aitken RJ, Baker MA. The role of proteomics in understanding sperm cell biology. Int J Androl. 2008;31(3):295-302. http://dx.doi.org/10.1111/j.1365-2605.2007.00851.x. PMid:18179557.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;29(1):25-34. http://dx.doi.org/10.1038/75556. PMid:10802651.

Baker MA, Reeves G, Hetherington L, Aitken RJ. Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics. 2010;10(3):482-95. http://dx.doi.org/10.1002/pmic.200900574. PMid:19943266.

Baker MA. Proteomics of post-translational modifications of mammalian spermatozoa. Cell Tissue Res. 2016;363(1):279-87. http://dx.doi.org/10.1007/s00441-015-2249-x. PMid:26239910.

Bhagwat S, Dalvi V, Chandrasekhar D, Matthew T, Acharya K, Gajbhiye R, Kulkarni V, Sonawane S, Ghosalkar M, Parte P. Acetylated α-tubulin is reduced in individuals with poor sperm motility. Fertil Steril. 2014;101(1):95-104. http://dx.doi.org/10.1016/j.fertnstert.2013.09.016. PMid:24268707.

Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508(7497):483-7. http://dx.doi.org/10.1038/nature13203. PMid:24739963.

Bilic P, Kules J, Galan A, Pontes LG, Guillemin N, Horvatic A, Sabes AF, Mrljak V, Eckersall PD. Proteomics in veterinary medicine and animal science: neglected scientific opportunities with immediate impact. Proteomics. 2018;18(14):1-7.

Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. http://dx.doi.org/10.1016/0003-2697(76)90527-3. PMid:942051.

Brewis IA, Gadella BM. Sperm surface proteomics: from protein lists to biological function. Mol Hum Reprod. 2010;16(2):68-79. http://dx.doi.org/10.1093/molehr/gap077. PMid:19717474.

Byrne K, Leahy T, McCulloch R, Colgrave ML, Holland MK. Comprehensive mapping of the bull sperm surface Proteome. Proteomics. 2012;12(23-24):3559-79. http://dx.doi.org/10.1002/pmic.201200133. PMid:23081703.

Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 25(9):1327-33.

Castro MA, Wang X, Fletcher MN, Meyer KB, Markowetz F. RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol. 2012;13(4):R29. http://dx.doi.org/10.1186/gb-2012-13-4-r29. PMid:22531049.

Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. Structurally Distinct Ca2+ Signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell. 2014;157(4):808-22. http://dx.doi.org/10.1016/j.cell.2014.02.056. PMid:24813608.

Dangi SS, Gupta M, Maurya D, Yadav VP, Panda RP, Singh G, Mohan NH, Bhure SK, Das BC, Bag S, Mahapatra R, Taru Sharma G, Sarkar M. Expression profile of HSP genes during different seasons in goats (Capra hircus). Trop Anim Health Prod. 2012;44(8):1905-12. http://dx.doi.org/10.1007/s11250-012-0155-8. PMid:22535151.

Dias GM. 2006. Identificação e caracterização parcial de proteínas de espermatozoides epididimários de Equus caballus [dissertação]. Rio de Janeiro: Universidade Estadual do Norte Fluminense.

du Plessis SS, Kashou AH, Benjamin DJ, Yadav SP, Agarwal A. Proteomics: a subcellular look at spermatozoa. Reprod Biol Endocrinol. 2011;9(1):36. http://dx.doi.org/10.1186/1477-7827-9-36. PMid:21426553.

Dubé C, Leclerc P, Baba T, Reyes-Moreno C, Bailey JL. The proacrosin binding protein, sp32, is tyrosine phosphorylated during capacitation of pig sperm. J Androl. 2005;26(4):519-28. http://dx.doi.org/10.2164/jandrol.04163. PMid:15955892.

Foster JA. Baby brother Acrosin-Binding Protein (ACRBP) Says, “Look at Me Now! Biol Reprod. 2013;88(4):106. http://dx.doi.org/10.1095/biolreprod.113.109413. PMid:23515673.

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808-15. PMid:23203871.

Guyonnet B, Dacheux F, Dacheux JL, Gatti JL. Theepididymal transcriptome and proteome provide some insightsinto new epididymal regulations. J Androl. 2011;32(6):651-64. http://dx.doi.org/10.2164/jandrol.111.013086. PMid:21764898.

Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet. 2015;32(6):853-63. http://dx.doi.org/10.1007/s10815-015-0465-7. PMid:25825237.

INMET [homepage on the Internet]. Brasil: National Institute of Meteorology, Inc; 2019 [cited 2019 Jan 20]. Available in: http://www.inmet.gov.br/portal/

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):457-62. http://dx.doi.org/10.1093/nar/gkv1070. PMid:26476454.

Kim JT, Jung HJ, Song H, Yoon MJ. Acrosin-binding protein (ACRBP) in the testes of stallions. Anim Reprod Sci. 2015;163:179-86. http://dx.doi.org/10.1016/j.anireprosci.2015.11.010. PMid:26597026.

Klinovska K, Sebkova N, Dvorakova-Hortova K. Sperm-egg fusion: a molecular enigma of mammalian reproduction. Int J Mol Sci. 2014;15(6):10652-68. http://dx.doi.org/10.3390/ijms150610652. PMid:24933635.

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5. http://dx.doi.org/10.1038/227680a0. PMid:5432063.

Lie PP, Cheng CY, Mruk DD. The biology of the desmosome-like junction: a versatile anchoring junction and signal transducer in the seminiferous epithelium. Int Rev Cell Mol Biol. 2011;286:223-69. http://dx.doi.org/10.1016/B978-0-12-385859-7.00005-7. PMid:21199783.

Lôbo RN, Silva FLR. Parâmetros genéticos para características de interesse econômico em cabras das raças Saanen e Anglo-nubiana. Cienc Agron. 2008;36:104-10.

Lorenzetti D, Poirier C, Zhao M, Overbeek PA, Harrison W, Bishop CE. A transgenic insertion on mouse chromosome 17 inactivates a novel immunoglobulin superfamily gene potentially involved in sperm-egg fusion. Mamm Genome. 2014;25(3-4):141-8. http://dx.doi.org/10.1007/s00335-013-9491-x. PMid:24275887.

Matos MNC. Efeito da sazonalidade no perfil de proteínas de espermatozoides em caprinos da raça Moxotó [dissertação]. Sobral: Universidade Federal do Ceará; 2012. Portuguese.

Moreira RF, Matos MNC, Alves Filho JG, Valle RV, Eloy AMX, Pinto TMF, Junio SPM, Costa CRR, Lima Filho JL, Lima JPMS, Cunha RMS. Diversity of ejaculated sperm proteins in Moxotó bucks (Capra hircus) evaluated by multiple extraction methods. Anim Reprod. 2017;15(1):84-92. http://dx.doi.org/10.21451/1984-3143-2017-AR966.

Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci. 2007;64(14):1805-23. http://dx.doi.org/10.1007/s00018-007-6552-x. PMid:17447007.

Nixon B, Mitchell LA, Anderson AL, Mclaughlin EA, O’bryan MK, Aitken RJ. Proteomic and functional analysis of human sperm detergent resistant membranes. J Cell Physiol. 2010;226(10):2651-65. http://dx.doi.org/10.1002/jcp.22615. PMid:21792924.

Oliva R, Mateo S, Castillo J, Azpiazu R, Oriola J, Ballescà JL. Methodological advances in sperm proteomics. Hum Fertil (Camb). 2010;13(4):263-7. http://dx.doi.org/10.3109/14647273.2010.516877. PMid:21117936.

Panneerdoss S, Siva AB, Kameshwari DB, Rangaraj N, Shivaji S. Association of lactate, intracellular pH, and intracellular calcium during capacitation and acrosome reaction: contribution of hamster sperm dihydrolipoamide dehydrogenase, the E3 subunit of pyruvate dehydrogenase complex. J Androl. 2012;33(4):699-710. http://dx.doi.org/10.2164/jandrol.111.013151. PMid:21903972.

Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2(1):19. http://dx.doi.org/10.1186/1752-0509-2-19. PMid:18294385.

Pei Y, Wu Y, Qin Y. Effects of chronic heat stress on the expressions of heat shock proteins 60, 70, 90, A2, and HSC70 in the rabbit testis. Cell Stress Chaperones. 2012;17(1):81-7. http://dx.doi.org/10.1007/s12192-011-0287-1. PMid:21830018.

Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein idenification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551-67. http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PMid:10612281.

Saram PD, Wilkinson C, Murdoch J. Role of outer dense fiber of sperm tails 2-like (ODF2L) protein in ciliation in mammalian cells and in zebrafish. Cilia. 2015;4(S1):32. http://dx.doi.org/10.1186/2046-2530-4-S1-P32.

Saraswat M, Joenväärä S, Jain T, Tomar AK, Sinha A, Singh S, Yadav S, Renkonen R. Human spermatozoa quantitative proteomic signature classifies normo - and asthenozoospermia. Mol Cell Proteomics. 2017;16(1):57-72. http://dx.doi.org/10.1074/mcp.M116.061028. PMid:27895139.

Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856-60. http://dx.doi.org/10.1038/nprot.2006.468. PMid:17406544.

Sperry AO. The dynamic cytoskeleton of the developing male germ cell. Biol Cell. 2012;104(5):297-305. http://dx.doi.org/10.1111/boc.201100102. PMid:22276751.

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):447-52. http://dx.doi.org/10.1093/nar/gku1003. PMid:25352553.

van Tilburg MF, Rodrigues MA, Moreira RA, Moreno FB, Monteiro-Moreira AC, Cândido MJ, Moura AA. Membrane-associated proteins of ejaculated sperm from Morada Nova rams. Theriogenology. 2013;79(9):1247-61. http://dx.doi.org/10.1016/j.theriogenology.2013.03.013. PMid:23602079.

van Tilburg MF, Salles MG, Silva MM, Moreira RA, Moreno FB, Monteiro-Moreira AC, Martins JA, Cândido MJ, Araújo AA, Moura AA. Semen variables and sperm membrane protein profile of Saanen bucks (Capra hircus) in dry and rainy seasons of the northeastern Brazil (3 degrees S). Int J Biometeorol. 2015;59(5):561-73. http://dx.doi.org/10.1007/s00484-014-0869-6. PMid:25086569.

Vazquez MH, Veiga MF, Marín-Briggiler CI, Valcarcel A. Cadherina epitelial como biomarcador de espermatozoides humanos funcionales. Estudios realizados en muestras de semen fresco y previamente criopreservado de donantes y de pacientes en tratamiento por infertilidad. Reproduccion. 2013;28:28-40.

Vilagran I, Castillo J, Bonet S, Sancho S, Yeste M, Estanyol JM, Oliva R. Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity. Theriogenology. 2013;80(5):443-50. http://dx.doi.org/10.1016/j.theriogenology.2013.05.006. PMid:23768753.
 

5de506880e8825c02d9f5038 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections