Expression of growth and differentiation Factor 9 and cognate receptors during final follicular growth in cattle
C.S. Haas, M.T. Rovani, F.C. Oliveira, A.D. Vieira, V. Bordignon, P.B.D. Gonçalves, R. Ferreira, B.G. Gasperin
http://dx.doi.org/10.21451/1984-3143-AR789
Anim Reprod, vol.13, n4, p.756-761, 2016
Abstract
Mutations in growth and differentiation factor 9 (GDF9) gene are associated to sterility or, paradoxically, increased ovulation rate in ewes. Despite its importance, the exact function of GDF9 in ovarian physiology is still poorly understood. This study aimed to investigate GDF9 function during dominant follicle growth and its regulation in follicular fluid. The regulation of GDF9 receptors in GnRH/LH-stimulated granulosa cells was also investigated. In a first experiment, a new follicular wave was induced and the intrafollicular GDF9 treatment into the largest growing follicle (8.5-9.5 mm) at both 100 (n = 3) and 1000ng/ml (n = 4) had no effect on follicular growth, estrus manifestation and ovulation compared to control (PBSinjected) follicles (n = 3). In a second experiment, follicles were obtained just after follicular deviation (day 4 after follicular emergence) and the abundance of GDF9 in follicular fluid did not differ between healthy dominant (n = 4) and atretic subordinate follicles (n = 4), as assessed by western blot analysis. Finally, mRNA expression of BMPR2 and TGFBR1 receptors was evaluated in granulosa cells obtained from preovulatory follicles (>12 mm diameter) obtained 0, 3, 6, 12 or 24 h after i.m. GnRH administration (n = 4-5 follicles/moment). Both receptors were significantly up regulated 12 h after GnRH treatment. Present results do not confirm the hypothesis that GDF9 inhibits dominant follicle growth and suggests a minor role in determining follicle fate. In the other hand, GDF9 receptors regulation in GnRH/LH-stimulated granulosa cells provides the first in vivo evidence of its involvement in the complex cascade of events that culminates in ovulation and luteinization in cattle.
Keywords
folliculogenesis, oocyte factors, ovulation