Animal Reproduction (AR)
https://animal-reproduction.org/journal/animreprod/article/doi/10.1590/1984-3143-AR2022-0090
Animal Reproduction (AR)
ORIGINAL ARTICLE

Molecular characteristics and transcriptional regulatory of spermatogenesis-related gene RFX2 in adult Banna mini-pig inbred line (BMI)

Zhipeng Liu; Hongmei Dai; Hailong Huo; Weizhen Li; Yun Jiang; Xia Zhang; Jinlong Huo

Downloads: 0
Views: 272

Abstract

RFX2 plays critical roles in mammalian spermatogenesis and cilium maturation. Here, the testes of 12-month-old adult boars of Banna mini-pig inbred line (BMI) were subjected to whole-transcriptome sequencing. The results indicated that the average expression (raw count) of RFX2 gene in BMI testes was 16138.25, and the average expression value of the corresponding transcript ENSSSCT00000043271.2 was 123.1898. The CDS of RFX2 obtained from BMI testes was 2,817 bp (GenBank accession number: OL362242). Gene structure analysis showed that RFX2 was located on chromosome 2 of the pig genome with 19 exons. Protein structure analysis indicated that RFX2 contains 728 amino acids with two conserved domains. Phylogenetic analysis revealed that RFX2 was highly conserved with evolutionary homologies among mammalian species. Other analyses, including PPI networks, KEGG, and GO, indicated that BMI RFX2 had interactions with 43 proteins involving various functions, such as in cell cycle, spermatid development, spermatid differentiation, cilium assembly, and cilium organization, etc. Correlation analysis between these proteins and the transcriptome data implied that RFX2 was significantly associated with FOXJ1, DNAH9, TMEM138, E2F7, and ATR, and particularly showed the highest correlation with ATR, demonstrating the importance of RFX2 and ART in spermatogenesis. Functional annotation implied that RFX2 was involved in 17 GO terms, including three cellular components (CC), six molecular functions (MF), and eight biological processes (BP). The analysis of miRNA-gene targeting indicated that BMI RFX2 was mainly regulated by two miRNAs, among which four lncRNAs and five lncRNAs competitively bound ssc-miR-365-5p and ssc-miR-744 with RFX2, respectively. Further, the dual-luciferase report assay indicated that the ssc-miR-365-5p and ssc-miR-744 significantly reduced luciferase activity of RFX2 3'UTR in the 293T cells, suggesting that these two miRNAs regulated the expression of RFX2. Our results revealed the important role of RFX2 in BMI spermatogenesis, making it an intriguing candidate for follow-up studies.

Keywords

Banna mini-pig inbred line (BMI), whole-transcriptome sequencing, RFX2, functional annotation, transcriptional regulatory

References

Arenas-Padilla M, Mata-Haro V. Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases. Cent Eur J Immunol. 2018;43(4):482-9. http://dx.doi.org/10.5114/ceji.2018.81351. PMid:30799997.

Bisgrove BW, Makova S, Yost HJ, Brueckner M. RFX2 is essential in the ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells sufficient for fluid flow. Dev Biol. 2012;363(1):166-78. http://dx.doi.org/10.1016/j.ydbio.2011.12.030. PMid:22233545.

Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857-66. http://dx.doi.org/10.1038/nrc1997. PMid:17060945.

Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi Y-C, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or-2 causes infertility in mice. Nat Genet. 2001;28(1):82-6. http://dx.doi.org/10.1038/ng0501-82. PMid:11326282.

Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development. 2014;141(7):1427-41. http://dx.doi.org/10.1242/dev.074666. PMid:24644260.

Chung M-I, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M, Baker JC, Marcotte EM, Wallingford JB. Coordinated genomic control of ciliogenesis and cell movement by RFX2. eLife. 2014;3:e01439. http://dx.doi.org/10.7554/eLife.01439. PMid:24424412.

Cornille F, Emery P, Schüler W, Lenoir C, Mach B, Roques BP, Reith W. DNA binding properties of a chemically synthesized DNA binding domain of hRFX1. Nucleic Acids Res. 1998;26(9):2143-9. http://dx.doi.org/10.1093/nar/26.9.2143. PMid:9547272.

de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr A, Lehmann A, Hoeijmakers J. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol. 2000;10(8):479-82. http://dx.doi.org/10.1016/S0960-9822(00)00447-4. PMid:10801416.

Emery P, Durand B, Mach B, Reith W. RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res. 1996a;24(5):803-7. http://dx.doi.org/10.1093/nar/24.5.803. PMid:8600444.

Emery P, Strubin M, Hofmann K, Bucher P, Mach B, Reith W. A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity. Mol Cell Biol. 1996b;16(8):4486-94. http://dx.doi.org/10.1128/MCB.16.8.4486. PMid:8754849.

Fassad MR, Shoemark A, Legendre M, Hirst RA, Koll F, le Borgne P, Louis B, Daudvohra F, Patel MP, Thomas L, Dixon M, Burgoyne T, Hayes J, Nicholson AG, Cullup T, Jenkins L, Carr SB, Aurora P, Lemullois M, Aubusson-Fleury A, Papon JF, O’Callaghan C, Amselem S, Hogg C, Escudier E, Tassin AM, Mitchison HM. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am J Hum Genet. 2018;103(6):984-94. http://dx.doi.org/10.1016/j.ajhg.2018.10.016. PMid:30471717.

Gajiwala KS, Chen H, Cornille F, Roques BP, Reith W, Mach B, Burley SK. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature. 2000;403(6772):916-21. http://dx.doi.org/10.1038/35002634. PMid:10706293.

Gao Y, Wu F, Ren Y, Zhou Z, Chen N, Huang Y, Lei C, Chen H, Dang R. MiRNAs expression profiling of bovine (Bos taurus) testes and effect of bta-miR-146b on proliferation and apoptosis in bovine male germline stem cells. Int J Mol Sci. 2020;21(11):3846. http://dx.doi.org/10.3390/ijms21113846. PMid:32481702.

Girardet L, Augière C, Asselin MP, Belleannée C. Primary cilia: biosensors of the male reproductive tract. Andrology. 2019;7(5):588-602. http://dx.doi.org/10.1111/andr.12650. PMid:31131532.

Guo B, Xiao C, Liu Y, Zhang N, Bai H, Yang T, Xiang Y, Nan Y, Li Q, Zhang W, Huang D. MiR-744-5p inhibits multiple myeloma proliferation, epithelial mesenchymal transformation and glycolysis by targeting SOX12/Wnt/β-catenin signaling. OncoTargets Ther. 2021;14:1161-72. http://dx.doi.org/10.2147/OTT.S270636. PMid:33654408.

Guo D, Ru J, Xie L, Wu M, Su Y, Zhu S, Xu S, Zou B, Wei Y, Liu X, Liu Y, Liu C. Tmem138 is localized to the connecting cilium essential for rhodopsin localization and outer segment biogenesis. Proc Natl Acad Sci USA. 2022;119(15):e2109934119. http://dx.doi.org/10.1073/pnas.2109934119. PMid:35394880.

Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3(3):e1738. http://dx.doi.org/10.1371/journal.pone.0001738. PMid:18320056.

Horvath GC, Kistler WS, Kistler MK. RFX2 is a potential transcriptional regulatory factor for histone H1t and other genes expressed during the meiotic phase of spermatogenesis. Biol Reprod. 2004;71(5):1551-9. http://dx.doi.org/10.1095/biolreprod.104.032268. PMid:15229132.

Hu T, Shen H, Li J, Yang P, Gu Q, Fu Z. RFC2, a direct target of miR-744, modulates the cell cycle and promotes the proliferation of CRC cells. J Cell Physiol. 2020;235(11):8319-33. http://dx.doi.org/10.1002/jcp.29676. PMid:32239691.

Huang W, Chen Q, Dai J, Zhang Y, Yi Y, Wei X, Wu Z. miR-744-5p suppresses tumor proliferation and metastasis by targeting transforming growth factor-beta 1 (TGF-β1) in hepatocellular carcinoma (HCC). J Gastrointest Oncol. 2021;12(4):1811-22. http://dx.doi.org/10.21037/jgo-21-319. PMid:34532130.

Huo JL, Wang P, Miao YW, Huo HL, Liu H, Zeng YZ, Xiao H. Isolation, sequence identification and tissue expression profile of a novel ribokinase gene (RBKS) from Chinese Banna mini-pig inbred line (BMI). Afr J Biotechnol. 2012;11(1):46-53. http://dx.doi.org/10.5897/AJB11.2885.

Huo JL, Zhang LQ, Zhang X, Wu XW, Ye XH, Sun YH, Cheng WM, Yang K, Pan WR, Zeng YZ. Genome-wide single nucleotide polymorphism array and whole-genome sequencing reveal the inbreeding progression of Banna minipig inbred line. Anim Genet. 2022;53(1):146-51. http://dx.doi.org/10.1111/age.13149. PMid:34658041.

Karnitz LM, Zou L. Molecular pathways: targeting ATR in cancer therapy. Clin Cancer Res. 2015;21(21):4780-5. http://dx.doi.org/10.1158/1078-0432.CCR-15-0479. PMid:26362996.

Katan Y, Agami R, Shaul Y. The transcriptional activation and repression domains of RFX1, a context-dependent regulator, can mutually neutralize their activities. Nucleic Acids Res. 1997;25(18):3621-8. http://dx.doi.org/10.1093/nar/25.18.3621. PMid:9278482.

Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat J-L, Morlé L, Durand B, Reith W. RFX2 is a major transcriptional regulator of spermiogenesis. PLoS Genet. 2015;11(7):e1005368. http://dx.doi.org/10.1371/journal.pgen.1005368. PMid:26162102.

Koay TW, Osterhof C, Orlando IMC, Keppner A, Andre D, Yousefian S, Suárez Alonso M, Correia M, Markworth R, Schödel J, Hankeln T, Hoogewijs D. Androglobin gene expression patterns and FOXJ1-dependent regulation indicate its functional association with ciliogenesis. J Biol Chem. 2021;296:100291. http://dx.doi.org/10.1016/j.jbc.2021.100291. PMid:33453283.

Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, Cleghorn W, Chen H-Z, Kornacker K, Liu C-G, Pandit SK, Khanizadeh M, Weinstein M, Leone G, de Bruin A. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 2008;14(1):62-75. http://dx.doi.org/10.1016/j.devcel.2007.10.017. PMid:18194653.

Mitxelena J, Apraiz A, Vallejo-Rodríguez J, Malumbres M, Zubiaga AM. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;44(12):5557-70. http://dx.doi.org/10.1093/nar/gkw146. PMid:26961310.

National Center for Biotechnology Information - NCBI [Internet]. 2022 [cited 2022 Sept 27]. Available from: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/GCF_000003025.6_Sscrofa11.1_rna_from_genomic.fna.gz

Nekrep N, Jabrane-Ferrat N, Wolf HM, Eibl MM, Geyer M, Peterlin BM. Mutation in a winged-helix DNA-binding motif causes atypical bare lymphocyte syndrome. Nat Immunol. 2002;3(11):1075-81. http://dx.doi.org/10.1038/ni840. PMid:12368908.

Pan J, Goodheart M, Chuma S, Nakatsuji N, Page DC, Wang PJ. RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development. 2005;132(18):4029-39. http://dx.doi.org/10.1242/dev.02003. PMid:16093322.

Quigley IK, Kintner C. Rfx2 stabilizes Foxj1 binding at chromatin loops to enable multiciliated cell gene expression. PLoS Genet. 2017;13(1):e1006538. http://dx.doi.org/10.1371/journal.pgen.1006538. PMid:28103240.

Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69(1):377-400. http://dx.doi.org/10.1146/annurev.physiol.69.040705.141236. PMid:17009929.

Shawlot W, Vazquez‐Chantada M, Wallingford JB, Finnell RH. Rfx2 is required for spermatogenesis in the mouse. Genesis. 2015;53(9):604-11. http://dx.doi.org/10.1002/dvg.22880. PMid:26248850.

Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71(1):319-30. http://dx.doi.org/10.1095/biolreprod.103.026880. PMid:15028632.

Singh G, Storey KB. MicroRNA cues from nature: a roadmap to decipher and combat challenges in human health and disease? Cells. 2021;10(12):3374. http://dx.doi.org/10.3390/cells10123374. PMid:34943882.

Tan YL, Bai ZG, Zou WL, Ma XM, Wang TT, Guo W, Liu J, Li JS, Jie-Yin, Zang YJ, Zhang ZT. miR-744 is a potential prognostic marker in patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2015;39(3):359-65. http://dx.doi.org/10.1016/j.clinre.2014.09.010. PMid:25543521.

Tang D, Sha Y, Gao Y, Zhang J, Cheng H, Zhang J, Ni X, Wang C, Xu C, Geng H, He X, Cao Y. Novel variants in DNAH9 lead to nonsyndromic severe asthenozoospermia. Reprod Biol Endocrinol. 2021;19(1):27. http://dx.doi.org/10.1186/s12958-021-00709-0. PMid:33610189.

Wang P, Zhang X, Huo H, Wang S, Song X, Huo J. Septin14, a gene specifically expressed in the testis and seminal vesicle of the Banna mini-pig inbred line (BMI). Anim Reprod. 2020;17(4):e20200521. http://dx.doi.org/10.1590/1984-3143-ar2020-0521. PMid:33791027.

Wolfe SA, van Wert J, Grimes SR. Transcription factor RFX2 is abundant in rat testis and enriched in nuclei of primary spermatocytes where it appears to be required for transcription of the testis‐specific histone H1t gene. J Cell Biochem. 2006;99(3):735-46. http://dx.doi.org/10.1002/jcb.20959. PMid:16676351.

Wolfe SA, Vanwert JM, Grimes SR. Transcription factor RFX4 binding to the testis‐specific histone H1t promoter in spermatocytes may be important for regulation of H1t gene transcription during spermatogenesis. J Cell Biochem. 2008;105(1):61-9. http://dx.doi.org/10.1002/jcb.21793. PMid:18459115.

Wu Y, Hu X, Li Z, Wang M, Li S, Wang X, Lin X, Liao S, Zhang Z, Feng X, Wang S, Cui X, Wang Y, Gao F, Hess RA, Han C. Transcription factor RFX2 is a key regulator of mouse spermiogenesis. Sci Rep. 2016;6(1):20435. http://dx.doi.org/10.1038/srep20435. PMid:26853561.

Xie M-Y, Chen T, Xi Q-Y, Hou L-J, Luo J-Y, Zeng B, Li M, Sun J-J, Zhang Y-L. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage. Biochem Pharmacol. 2020;175:113898. http://dx.doi.org/10.1016/j.bcp.2020.113898. PMid:32145262.

Yu CH, Xie T, Zhang RP, A ZC. A ZC. Association of the common SNPs in RNF212, STAG3 and RFX2 gene with male infertility with azoospermia in Chinese population. Eur J Obstet Gynecol Reprod Biol. 2018;221:109-12. http://dx.doi.org/10.1016/j.ejogrb.2017.12.030. PMid:29277047.

Zhang M, Li H, Zhang Y, Li H. Oncogenic miR-744 promotes prostate cancer growth through direct targeting of LKB1. Oncol Lett. 2019;17(2):2257-65. PMid:30675291.

Zhou W, Li Y, Gou S, Xiong J, Wu H, Wang C, Yan H, Liu T. MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget. 2015;6(35):37557-69. http://dx.doi.org/10.18632/oncotarget.5317. PMid:26485754.
 


Submitted date:
09/27/2022

Accepted date:
12/31/2022

6400aaffa9539515e246c904 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections